AXION Searches - FLASH

Claudio Gatti - LNF

Physics Beyond Colliders Annual Workshop, CERN 27 Mar 2024

COLD@LNF

CryOgenic Laboratory for Detectors:

- Axion Dark Matter Experiments
- Quantum Sensing with Superconducting Devices
- Type II and HTC Superconducting Cavities

$$\nabla^2 E - \partial_t^2 E = -g_{a\gamma\gamma} B_0 \partial_t^2 a$$

Solving the equation inside a cylindrical resonant cavity, the signal power is

$$P_{\rm sig} = \left(g_{\gamma}^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\Lambda^4}\right) \times \left(\frac{\beta}{1+\beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mnl} Q_L\right)$$

 β antenna coupling to cavity V cavity volume C_{mnl} mode dependent factor about 0.6 for TM010

 Q_L cavity "loaded" quality factor

Sikivie Phys. Rev. D 32,11 (1985)

QUAX@LNF: The LNF Axion Haloscope

December 2023 Run

- Cavity temperature 30 mK
- Magnetic Field B=8 T
- Frequency 8.8 GHz
- Copper cavity Q₀=50,000 with tuner
- HEMT amplifier
- Tnoise 4K
- 2 weeks data taking
- 6 MHz scan

QUAX@LNF Results for 2023 Run

- 24 runs, 1 hour each, 250 kHz of frequency steps
- Average exclusion 90% c.l. $g_{a\gamma\gamma} = 2 \times 10^{-13} \ GeV^{-1}$
- Preprint arXiv:2404.19063

$\nu_c [\text{GHz}]$	Q_L	β
8.83176900	32345	0.5206
8.83203080	32228	0.519
8.83229550	32273	0.5082
8.83255580	32332	0.5141
8.83282190	32387	0.5097
8.83307310	32401	0.5078
8.83334500	32300	0.5097
8.83360070	32503	0.5058
8.83386200	32540	0.5075
8.83412790	32752	0.5014
8.83438580	32573	0.5026
8.83464620	32904	0.5005
8.83490660	32957	0.4984
8.83516350	32863	0.4951
8.83542850	32872	0.4947
8.83568970	33326	0.4881
8.83594630	33051	0.489
8.83620570	33056	0.4894
8.83646975	33104	0.4857
8.83672330	33584	0.4823
8.83698660	33529	0.4803
8.83724500	33659	0.4823
8.83750860	33639	0.4793
8.83776640	33450	0.4793

QUAX LNF&LNL 2023-2025

Galactic axion search at 100 MHz (0.5-1.5 µeV)

Large Superconducting Magnets at LNF

FINUDA→FLASH

B(T)	1.1
I(A)	2845
R(m)	1.4
L(m)	2.2

KLOE→KLASH

B(T)	0.6
I(A)	2300
R(m)	2.43
L(m)	4.4

Physics of the Dark Universe 42 (2023) 101370

INFN

THE F(K)LASH Cryostat and Resonant Cavity

- KLOE/FINUDA Magnet
- Vacuum vessel made by a-magnetic stainless steel

counterweight

- Shield in aluminum alloy, to be cooled to 70 K by gaseous Helium
- OFHC Cu resonant cavity, cooled to 4.6 K by saturated liquid Helium
- 3 OFHC Cu tuning bars mounted on eccentric cranks with reduction gearboxes

Stepper motor

(2.5 µrad)

Design by FANTINI Sud Mechanical Div.

Sensitivity to Axions and ALPS

Parameter	Value
$ u_c [\mathrm{MHz}] $	150
$m_a [\mu { m eV}]$	0.62
$g_{a\gamma\gamma}^{\rm KSVZ}$ [GeV ⁻¹]	2.45×10^{-16}
Q_L	1.4×10^5
C_{010}	0.53
B_{\max} [T]	1.1
eta	2
$ au~[{ m min}]$	5
$T_{\rm sys}$ [K]	4.9
$P_{\rm sig}$ [W]	0.9×10^{-22}
Scan rate $[Hz s^{-1}]$	8
$m_a [\mu \mathrm{eV}]$	0.49 - 1.49
$g_{a\gamma\gamma}$ 90% c.l. [GeV ⁻¹]	$(1.25 - 6.06) \times 10^{-16}$

Light Primordial Black Hole Dark Matter with Ultra-high-frequency Gravitational Waves

A. Berlin Phys. Rev. D 105, 116011

Franciolini Phys. Rev. D 106, 103520 2022

FLASH Sensitivity to HFGW

Sensitivity limited also by short duration time of the HFGW from PBHs. Gain 1 or 2 order of magnitudes wrt GHz cavities:

- Signal power scales as Radius²
- Q factor effective as long as Ncycles~Q

 $t_{int} \simeq 2.72 \cdot 10^{-14} \text{ s } \times \left(\frac{M_c}{10^{-5} M_{\odot}}\right)^{-5/3} \left(\frac{\nu}{200 \text{ MHz}}\right)^{-8/3} \left(\frac{10^6}{Q}\right)$

Mode	Resonant Frequency [MHz]	Q factor (@4°K)
TM010	109.5	626e3
TM011	166.1	526e3
TM012	272.3	752e3
TM110	174.4	790e3
TM111	214.5	598e3
TM112	304.7	712e3
TM210	233.7	915e3
TM211	264.9	664e3
TM212	342.1	755e3

Commissioning of the FINUDA Magnet – Last Operated in 2007

Successful Test of the FINUDA Magnet

After a series of operations, the cryogenic plant was finally put back into operation. On Jan the 19th 2024, FINUDA was cooled down to 4 K and energized with a current of 2706 A, generating a magnetic field of 1.05 T.

CONCLUSIONS

FINUDA Magnet successfully tests in January 2024 after 20 years from last operation. Next steps: Technical Design Report, INFN approval, construction and commissioning. About 5 years from now.

: For the TDR we sign need to fully N design mechanical and cryogenics and RF ng. components: Setting up a Collaboration with both theory and experimental groups

Experimental groups: LNF, INFN and Uni Pisa, INFN Trento, Uni Camerino

Ongoing discussion with INFN Milano

M

Groups are joining from Spain and Germany

Vacuum vessel Cryostat support Service Turret Radiation screens RF Cavity and pick up antennas Tuning System Assembly Tools Signal amplification and DAQ SQUID multiplexing B field shields Computing

