

The FCC-ee injector scheme

FCC

H. Bartosik, C. Carli, R. Corsini, E. Gschwendtner,
 Y. Papaphilippou, F. Zimmermann
 with input from
 W. Bartmann, P. Craievich, K. Oide

Introduction

- FCC (Future Circular Collider) is an ongoing study of an electron-positron collider (FCC-ee) to be followed later by a hadron collider (FCC-hh) with a centre-of-mass energy of ~100 TeV
 - About 91 km circumference tunnel to be embedded in the CERN accelerator complex to be used first for FCC-ee and then for FCC-hh
 - Feasibility study to be concluded in 2025 as input for the next ESPP update

Introduction

- FCC (Future Circular Collider) is an ongoing study of an electron-positron collider (FCC-ee) to be followed later by a hadron collider (FCC-hh) with a centre-of-mass energy of ~100 TeV
 - About 91 km circumference tunnel to be embedded in the CERN accelerator complex to be used first for FCC-ee and then for FCC-hh
 - Feasibility study to be concluded in 2025 as input for the next ESPP update
- FCC-ee will require a new lepton (e+/e-) injector complex
- The aim of this presentation is to illustrate the potential of this injector complex and hopefully trigger ideas of possible exploitation of the new complex beyond FCC-ee itself

- FCC-ee accommodates 4 experiments
- Dedicated runs for Z, WW, Z-H and Top measurements
- Shutdown periods for rearrangement (installation / removal) of RF systems required for different modes (e.g. high beam loading for Z, high gradient for Top)

4

FCC-ee parameter table

Parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
horizontal rms IP spot size [μm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / <mark>15.5</mark>	3.5 / <mark>5.4</mark>	3.4 / <mark>4.7</mark>	1.8 / <mark>2.2</mark>
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	5.0	1.25
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11

Total intensity limited by synchrotron radiation power (100 MW)

Short beam lifetime requires **booster** for top-up operation and **continuous beam delivery from injector**

FCC-ee complex ER LHC Bevond olliders Injection Tunnel FCC-ee collider and booster (top-up) in the same tunnel **Injector complex** from mid-term review: wes (7 per Sector) final energy: 16 GeV 6 GeV Option 1 (with SPS/PBR) SPS Common Linac pLinac eLinac DR 1.54 GeV final energy: 20 GeV 14 GeV Option 2 (HE Linac) 6 GeV Booster High Energy Linac ring eLinac Common Linac pLinac **Option 2 is present baseline** DR 1.54 GeV

Injector complex - baseline

PBC Annual Workshop, 27.03.2024, CERN

- Electron linac up to 1.54 GeV
- Common linac to 6 GeV, thus operating at twice repetition rate

- Positron target at 6 GeV and linac to accelerate resulting positrons to 1.54 GeV
- Positron damping ring at 1.54 GeV (compatible with polarization) and return line into common linac
- High energy linac to reach 20 GeV

Injector complex – alternative proposal

- Electron linac up to 2.86 GeV
- Positron target at 2.86 GeV (positron yield OK) and positron linac to reach again 2.86 GeV
- Damping ring for both e+ and e- at 2.86 GeV (compatible with polarization)
- High energy linac to reach 20 GeV

Damping ring filling scheme

- Continuous re-filling scheme (FIFO)
 - Staggered injection

- 25 ns bunch spacing
- Storage for ~42.5 ms (4x transverse damping times)
- Staggered extraction
- Present scheme
 - 2 bunches @200 Hz

Damping ring filling scheme

- Continuous re-filling scheme (FIFO)
 - Staggered injection

- 25 ns bunch spacing
- Storage for ~42.5 ms (4x transverse damping times)
- Staggered extraction
- Present scheme
 - 2 bunches @200 Hz
- Alternative option under study
 - 4 bunches @100 Hz

FCC-ee injection scheme

• Alternating booster cycles for e+/e-

- Bunch intensity in the injector is maximum of 10% of final bunch intensity in the collider
- Maximum intensity in the booster is limited by machine protection constraints for transfer to collider
- Bunches colliding in the FCC-ee right from the start
- Booster in the FCC tunnel for continuous top-up operation to keep bunch intensity imbalance within tolerance
 - Tight requirements on bunch intensity imbalance in the collider due to instabilities
 - · Tolerable intensity imbalance depends on operation mode of collider

Injector operation for FCC-ee: Z

- 76% injector duty cycle (Z) most demanding for injectors (highest bunch intensity)
- 10 booster cycles for one top-up of all bunches due to machine protection limitations

Cycling of the FCC-ee booster

FCC

FCC-ee injector scheme

Injector operation for FCC-ee: WW

• 74% injector duty cycle (WW) for 100 Hz injection (baseline)

Cycling of the FCC-ee booster

Cycling of the FCC-ee booster

FCC-ee injector scheme

R

Beyond Colliders

30

Injector operation for FCC-ee: WW

- 74% injector duty cycle (WW) for 100 Hz injection (baseline)
- 37% injector duty cycle (WW) for 200 Hz injection (like for Z)

Cycling of the FCC-ee booster

FCC

FCC-ee injector scheme

ER

Injector operation for FCC-ee: ZH

60% injector duty cycle (ZH) for 50 Hz injection (baseline)

Beam accumulation in FCC-ee collider

Beyond Colliders

Injector operation for FCC-ee: ZH

- 60% injector duty cycle (ZH) for 50 Hz injection (baseline)
- 15% injector duty cycle (ZH) for 200 Hz injection (like for Z)

Injector operation for FCC-ee: Top

- 12% injector duty cycle (Top) assuming 50 Hz injection
- · Very few bunches, booster cycles completely dominated by ramping to high energy

Cycling of the FCC-ee booster

ttbar mode (50 Hz Linac) 56 bunches 1e11 bunch intensity (collider) 1.5 1.0 target bunch intensity: 1.64e11 maximum intensity imbalance: 3.0% beam lifetime in collision: 348 s 0.5 booster cycle length: 4.66 s injection efficiency: 100.0% 0.0 1e10 3.0 bunch intensity (booster) 2.5 2.0 1.5 1.0 0.5 0.0 20 25 0 5 10 15 30 time (minutes)

FCC-ee injector beam parameters

Running mode	Z	WW	ZH	ttbar	Unit	
Beam energy at exit of injector	20				GeV	
Number bunches/collider ring	11200	1780	380	56		
Number bunches/booster cycle	1120	980	380	56		
Booster cycle length	3.64	5.95	6.3	4.66	S	
Maximum bunch charge	≥4	1.6	1.6	1.6	nC	
Maximum bunch intensity	≥ 2.5	1	1	1	1010	
Number of bunches per pulse	2	2	2	2		
Linac repetition rate	200	100 (200)	50 (200)	50	Hz	
Norm. emittance (x, y) (rms)	<10,10				mm mrad	
Bunch length (rms)	~1				mm	
Energy spread (rms)	~0.1				%	
Bunch spacing from injector	25				ns	
Injector duty cycle for FCC-ee	76	74 (37)	60 (15)	12	%	

PBC Annual Workshop, 27.03.2024, CERN

Linac & damping ring on
 Prevessin site

○ FCC

- Transfer line to SPS BA4 (keep option to use SPS as in the original scheme)
- 1 beam through SPS tunnel
- 1 beam through TT40/TI8

Bevond

FCC-ee injector scheme

A primary electron beam facility at CERN — eSPS

Conceptual design report

Corresponding editors: Torsten Åkesson, Lund University Steinar Stapnes, CERN

Other exploitation of FCC-ee injectors?

- Proposal for primary electron facility already made in context of eSPS (original proposal for Light Dark Matter eXperiment – LDMX)
- Inspired by this proposal, FCC-ee injector beams could be used for a CLEAR-like facility (including also damping ring):
 - R&D for accelerator components and beam diagnostics for FCC-ee or the injector itself (in particular if injector goes online ahead of FCC-ee and/or is built in stages)
 - Irradiation facility (e.g. for testing electronics components)
 - Medical research
 - Use synchrotron light from damping ring to test coatings, photon desorption
 - Plasma wakefield acceleration test facilities (electron driven, but maybe even in combination with proton driven plasma, see next slide)
- FCC-ee injector layout could still work for eSPS proposal (especially if SPS is part of the FCC-ee injector)

20

FCC

ER

e+/e- beams interesting for AWAKE !

- The layout of the FCC-ee injector complex passes through SPS BA4, i.e. the SPS extraction point of protons for the plasma wakefield acceleration experiment AWAKE
- Keeping SPS operation with protons, there would be a unique opportunity to perform proton driven plasma wakefield acceleration of 20 GeV electrons and positrons
 - Lepton beam parameters fit extremely well for wakefield experiments
 - Unique possibility of positron acceleration (currently no experiments worldwide)
- With the two-bunches setup, also electron driven plasma wakefield acceleration experiments can be performed
 - 1st electron beam is the drive beam, 2nd one is the witness beam
 - In addition, another unique possibility to test positron acceleration
- Proton beam line, experimental facility as well as lepton injection area and tunnel to the experiment exists
 - Would only require ~800 m transfer line for e+/e- in TT40/41 tunnel

Summary and conclusions

- The FCC-ee injector complex has potential to provide beams for other facilities
- The injector complex can provide

- Pairs of 20 GeV e+ or e- bunches spaced by 25 ns (maybe longer if needed) with up to 2.5e10 particles per bunch (4 nC), normalized emittance <10 mm mrad and bunch length of ~ 1 mm
- Only between 12% and 76% of the duty cycle is needed for top-up of FCC-ee, the rest would be available for other users / facilities
- A typical other facility could use bursts of bunch pairs at 200 Hz for ~ seconds with the possibility to vary the bunch intensity accurately
- Longer trains of bunches might be possible to be studied in case of interest
- This opens the possibility for new facilities and applications (e.g. plasma wakefield acceleration of electrons and positrons in proton or electron-driven plasma wakefield experiments)

Thanks for your attention!

Collider top-up interval (between e+ and e-)(4 IP) [s] = $\tau_2 \Delta$

FCC-ee injector scheme

/ond

Parameter table for the FCC-ee filling

	Mar 5 2024 K Oida	Z		WW	ZH	tt	
Collider energy [GeV]	Mar. 5, 2024 K. Olde	45.6		80	120	182.5 🗖	
Collider bunches / ring		11200		1780	380	56	
BR bunches / ring		11200	5600				
Collider particles / bunch N_b [10 ¹⁰]		21.4		14.5	13.2	16.4	
Allowable charge imbalance Δ [±%]		5		3			
Injector particles / bunch $N_{ m r}$	≦ 2.5						
Bootstrap particles / bunch $[10^{10}] = 2N_b\Delta$		2.14		0.87	0.792	0.984	
# of BR ramps (up to 1/2 sto	red current, with N _{max})	3	6	3	3	4	
# of BR ramps (bootstrap with 2 $N_b\Delta$)		5	10	4	4	5	
BR ramp time (up + down) i	t _{ramp} [s]	0.6		1.5	2.5	4.1	
Linac bunches / pulse		2/4/8		2 / 4			
Linac pulses needed n _p		5600		890	190	28	
Linac repetition frequency [Hz] f _{rep}	200 / 100 / 50		100 / 50	50		
Collider filling time from so	ratch [s]	228.8	457.6	72.8	30.8	39.42	
Collider filling time for top	$-up [s] = n_p / f_{rep} + t_{ramp}$	28.6	29.2	10.4	6.3	4.66	
Lum. lifetime (4 IP) [s]		1330		970	660	650	
Lattice+BS lifetime (4 IP) [s]		10000		4000	3500	3000	
(real lattice lifetime)/(design	1 lattice lifetime)	0.25		0.25	0.25	0.25	
Collider lifetime (4 IP) τ2 [s]		868.1		492.4	376.2	348.2	

43.4

14.8

11.3

10.4

Co BR Co Al Inj Bo

BR Liı Liı Lin Co Co u

Integration of FCC-ee complex

PBC Annual Workshop, 27.03.2024, CERN

- Linac & damping ring on
 Prevessin site
- Transfer to SPS BA4
- 1 beam through SPS tunnel
- 1 beam through TT40/TI8

Bevond

FCC

Old integration of FCC-ee complex

