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Definiton of χCFT
Complex cobordisms:

Σ

∂outΣ ∂inΣ

Take a closed Riemann surface Σ̂, and a collection D1, . . . , Dn ⊂ Σ̂ of disjoint closed
discs with smooth boundary. A complex cobordism is something of the form Σ = Σ̂ \
(D̊1 ∪ . . . ∪ D̊n), along with a partition of its boundary components into some labelled
“in” and some labelled “out”.

We equip Σ with the sheaf of function that are continuous, smooth on the boundary,
and holomorphic in the interior. Composition of cobordisms = pushout of topological
spaces, along with the sheaf

OΣ1∪Σ2(U) =
{
f : U → C s.t. f |U∩Σ1 ∈ OΣ1(U ∩ Σ1) and f |U∩Σ2 ∈ OΣ2(U ∩ Σ2)

}
Technical point. We allow ∂inΣ and ∂outΣ to touch: if Di corresponds to an incoming

circle and Dj corresponds to an outgoing circle, then we only require their interiors to be
disjoint in Σ̂.

To define a complex cobordism from S1 to S2, also keep track of diffeomorphisms
ϕin :S1 → ∂inΣ and ϕout :S2 → ∂outΣ.

The semigroup of annuli Ann(S):
Let S be a connected 1-manifold. A pair of smooth embeddings S ↪→ C that are one

‘inside’ the other specifies an element of Ann(S). One can think of Ann(S) as a quotient
of the space of such pairs of embeddings:

Ann(S) ⊂ HomCobConf (S, S)

There’s an embedding Diff(S) ↪→ Ann(S) which sends a diffeomorphism ψ to the com-
pletely thin annulus (A=S, ϕin=ψ, ϕout= id). The semigroup Ann(S) should be thought
of as the complexification of the group Diff(S).

Moduli space of complex cobordisms:
HomCobConf (S1, S2) is an infinite dimensional complex manifold. One may encode

this by defining what it means to be a family of complex cobordisms, parametrised by a
complex manifold M :

M

−→ π

S1 ×M
ϕin

S2 ×M
ϕout

W
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The main condition is that for every point x of S1 or S2, the section ϕ|{x}×M : M → W
of π should be holomorphic.

Full CFT versus chiral CFT:
They’re not the same thing. (It’s a bit like associative algebras versus Lie algebras.

They’re both “algebras”, but they’re just not the same thing.)

Concrete linear category:
A concrete linear category is a pair (C, U) consisting of a linear category C and a

faithful functor U from C to the category of topological vector spaces. Think: C is the
category of representations of a group or an algebra, and U is the functor that sends a
representation to its underlying vector space.

Chiral CFT:
A→ χCFT is a symmetric monoidal functor CobConf →

{
Concrete linear categories

}
←

satisfying a couple extra conditions. Unpacking, we get:

For every 1-manifold S,
a category C(S).

A ‘forgetful’ functor
U : C(S)→ TopVec.

For every cpx cobordism Σ,
a functor

FΣ : C(∂inΣ)→ C(∂outΣ).

For every V ∈ C(∂inΣ),
a linear map

ZΣ : V → FΣ(V ).

The extra conditions (explained later) convey the ideas that “F is topological”, and “Z is
holomorphic”.

Central extensions:
Let g be a Lie algebra. A Lie algebra 2-cocycle is a bilinear map ω : g×g→ A which

is antisymmetric, and satisfies
3∑
ω([X, Y ], Z) = 0. Given a 2-cocycle, one can form a

central extension g̃ := g ⊕ A, with Lie bracket [(X, a), (Y, b)]g̃ := ([X, Y ]g, ω(X, Y )).
The 2-cocycle identity guarantees that this new bracket satisfies the Jacobi identity.

The Witt and Virasoro algebras:
The Lie algebra associated to Diff(S1) is the set of vector fields on S1, equipped with

the opposite of the usual Lie bracket of vector fields:

[f(z)∂/∂z, g(z)∂/∂z] := (gf ′ − fg′)∂/∂z.

We’ll be working with the associated complex Lie algebra, which corresponds to Ann(S1).
It admits a dense subalgebra, known as the Witt algebra, spanned by `n := zn+1∂/∂z. The
formula

ωV ir(`m, `n) := C/12(m3 −m)δm+n,0

defines a 2-cocycle on the Witt algebra with values in C·C (where C is a formal symbol).
The corresponding central extension is called the Virasoro algebra. The underlying vector
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space of the Virasoro algebra is Witt ⊕ C·C, and it fits into a central extension

0→ C·C → Vir →Witt → 0.

We write Ln for `n viewed as an element of Vir :

[Lm, Ln] = (m− n)Lm+n + 1/12(m3 −m)δm+n,0 · C

This is a universal central extension. This means that one doesn’t need to know the for-
mula in order to be able to think about it. In particular, it also exists and makes sense for
the Lie algebra of vector fields on any other circle manifold.

Central extension of semigroup of annuli:
The Virasoro central extension integrates to a central extension

0→ C⊕ Z→ Añnuniv(S)→ Ann(S)→ 0

The theory of integration works well for simply connected Lie groups, and applies with
minor changes to the semigorup of annuli.

– Z : comes from taking the universal cover of Ann(S).
– C : comes from integrating the Virasoro cocycle.

Fix a central charge c ∈ R. Performing the pushout along the map z 7→ ezc : C → C×,
we get a new central extension:

0→ C× ⊕ Z→ Añnc(S)→ Ann(S)→ 0 (1)

which depends on c ∈ R.

End of definition of χCFT:
... of central charge c:

For every Ã ∈ Añnc(S),
a trivialization

TÃ : FA → idC(S).

For every V ∈ C(S),
the map (representation)

Añnc(S)→ LinEnd(V )

Ã 7→
[
V

ZA−→ FA(V )
TÃ−→ V

]
is holomorphic.

Let’s check that it’s a representation:

V FA(V ) V

FB∪A(V ) = FBFA(V ) FB(V ) V

ZA TÃ

ZB ZB

F (TÃ) TB̃
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Examples of χCFT
•WZW models: One per compact simple Lie group G, and level k ∈ N.
• minimal models: Classified by their central charge of the form c = 1− 6/m(m+ 1) for
m ∈ {2, 3, 4, ...}

c = 0, 1/2, 7/10, 4/5, 6/7, ...

Affine Lie algebras:
Fix g a simple Lie algebra (sln, son, spn, or some exceptional ones G2, F4, E6,7,8) and

k ∈ N a level. For X ∈ g, we write

Xn := Xzn ∈ g[t, t−1],

so that the bracket of g[t, t−1] is given by [Xm, Yn] = [X, Y ]m+n. The affine Lie algebra

ĝ = g[t, t−1]⊕ CK

is the central extension of g[t, t−1] associated to the cocycle ω(f, g) = Res〈df, g〉, where
〈 , 〉 is the basic inner product (given by Tr(XY ) in the case g = sln). Its bracket is given
by

[Xm, Yn] = [X, Y ]m+n +mδm+n,0〈X, Y 〉K,

and K spans its center.

Classification of g-reps:
– Λ : weight lattice.
– α1, . . . , αr ∈ Λ : simple roots.
– Λ+ := {λ ∈ Λ : 〈λ, αi〉 ≥ 0} : dominant weights.

Main Theorem of Lie theory: simple finite dimensional g-reps↔ dominant weights.

We write Lλ for the g-rep corresponding to λ ∈ Λ+.

In the case g = sl2:
Λ = Z
Λ+ = N
and Lλ = Symλ(C2) = irrep of dim λ+ 1.

Rep(ĝ), construction and classification:
Take λ ∈ Λ+. Then we let Vλ := simple quotient of Indĝ≥0ĝLλ (quotient by the max-

imal proper submodule). Here, Ind : Rep(ĝ≥0) → Rep(ĝ) is the adjoint to the forgetful
functor, ĝ≥0 acts on Lλ via the projection map ĝ≥0 � g, and K acts by k.

Not all these are good to keep:
•We only want the unitary ones = the ones that admit a non-degenerate inner product.
• Equivalently, the integrable ones = the ones that exponentiate to a projective action
of LG := MapC∞(S1, G) on the Hilbert space completion Hλ of Vλ.

Repk(ĝ) := level k integrable positive energy representation of ĝ.

Here, “level k” means K acts by k.
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The set of irreducible level k integrable positive energy representations of the affine
Lie algebra ĝ is in canonical bijection with the finite set

Ak := kA ∩ Λ =
{
λ ∈ Λ+ : 〈Λ, αmax〉 ≤ k

}
,

where αmax = highest root.

In the case g = sl2:
Ak = {0, 1, ..., k} ⊂ N
Repk(ŝl2) has k + 1 simple objects V0, V1, . . . , Vk.

In general, Ak is the set of integer points of some simplex.

Coordinate-free affine Lie algebras:
Let Lg be the completion of g[t, t−1] given by Lg := MapC∞(S1, g), and let Hλ be

the Hilbert space completion of Vλ. Passing to Hλ has the advantage that it’s not just
ĝ = g[t, t−1]⊕ CK that acts, but also its completion L̃g := Lg⊕ CK.

Annoyingly, the action of L̃g on Hλ is an action by unbounded operators (i.e., these
are only densely defined operators). Nevertheless, all these admits a common dense do-
main of “smooth vectors” Ȟλ ⊂ Hλ. So we get an honest action of L̃g on Ȟλ.

If we replace the standard circle S1 by some arbitrary 1-manifolds S, we let

L̃Sg := MapC∞(S, g)⊕ CK

where the central extension is given by the same cocycle K/2πi ·
∫
S
〈df, g〉.

The chiral WZW model:
The linear category associated to a 1-manifold S by the chiral WZW model is

WZWG,k(S) = Repk(L̃Sg)

= level k integrable positive energy representation of L̃Sg.

Positive energy condition:
So far, all I’ve told you is that a unitary representation of the affine Lie algebra has

positive energy if it’s one of the ones obtained by the above construction. But there’s also
an axiomatic way to define that condition:

Definition: A representation of Vir has positive energy if the operator associated to
L0 has discrete spectrum, the spectrum is bounded from below, and all the eigenspaces
are finite dimensional.

Definition: An irreducible representation of L̃g has positive energy if it extends to a
representation of L̃goVir , and the Virasoro action has positive energy. A positive energy
representation of L̃g is a finite direct sum of irreducible positive energy representations.

Segal commutation relations (definition of chiral WZW model):
Let Σ be a complex cobordism from Sin to Sout.

Let Cin := Repk
(
L̃Sing

)
and, similarly, let Cout := Repk

(
L̃Soutg

)
.
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Given an object (V, ρV ) ∈ Cin, its image (W, ρW ) ∈ Cout under the functor FΣ comes
equipped with a linear map ZΣ : V → W satisfying:

∀f ∈ Ohol(Σ; g) : ZΣ ◦ ρV (fin) = ρW (fout) ◦ ZΣ

where fin/out := f |∂in/outΣ.
Moreover, (W, ρW ) and ZΣ should be universal in the sense that for any (W̃ , ρW̃ ) ∈

Cout and for any linear map Z̃ : V → W̃ satisfying the same relations as above, there
should exist a unique morphism κ : W → W̃ in Cout that makes the following diagram
commute:

V

W

W̃

ZΣ

Z̃

κ

The above universal property defines a functor FΣ : Cin → Cout. But, sadly, it does
not guarantee that it has any good formal properties.

Open problem: Given composable cobordisms Σ1 and Σ2, prove that the canonical
map FΣ1∪Σ2(V )→ FΣ1FΣ2(V ) is an isomorphism.

The state-operator correspondence
The vacuum sector and the vacuum vector:

Recall that, the ⊗ of linear categories has Vecfd as its unit. So, by the compatibility
between t and ⊗, we must have C(∅) = Vecfd.

Now, C ∈ Vecfd.
Let D be the unit disc.

We call H0 := FD(C) ∈ C(S1) the vacuum sector of the χCFT.
It has a vacuum vector Ω := ZD(1) ∈ H0, where ZD : C→ FD(C).
The other simple objects of C(S1) are called charged sectors.

Everything is defined in terms of D ⇒ the Möbius group Möb := Aut(D) acts on H0,
fixing Ω.

The fusion product:
The category C = C(S1) is equipped with the fusion product V �W := F (V ⊗W ).

The vacuum sector is the unit of the fusion product:

H0 �H0 := F (H0 ⊗H0) = FPants(FD(C)⊗ FD(C))

= FPants(FDtD(C)) = FPants∪(DtD)(C) = FD(C) = H0
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Moreover,

H0 ⊗H0
ZPants−−−−→ H0 �H0 = H0

Ω⊗ Ω Ω

∈ ∈

7→

Univalent maps:
Given a holomorphic embedding ψ : D → D (a univalent map), we let Aψ := D \

ψ(D̊) ∈ Ann(S1).

Univ := {Aψ |ψ : D→ D a holomorphic embedding}

The subsemigroup Univ ⊂ Ann := Ann(S1) is a bit like a Borel subgrorup of an alge-
braic group (like upper triangular matrices in GLn).

Let ˜Univ be the universal cover of Univ:

0→ Z→ ˜Univ→ Univ→ 0

The Lie algebra of Univ is the span of `n = zn+1∂/∂z for n ≥ −1.

The Virasoro cocycle vanishes on those ⇒ ˜Univ ⊂ Añnc and Univ ⊂ Annc, where
Annc := Añnc/Z is the quotient of Añnc by the central Z which appears in (1).

The action of Möb on H0 extends to an action of Univ, again fixing Ω.
The action of ψ ∈ Univ on H0 is given by:

H0 = FD(C)
ZAψ−−−−→ FAψFD(C) ∼= FAψ∪D(C) ∼= FD(C) = H0, (2)

and it indeed fixes the vacuum vector: Ω = ZD(1)
ZAψ7−→ ZAψZD(1) 7→ ZAψ∪D(1) 7→

ZD(1) = Ω.

Recall that Añnc acts on all the sectors of the χCFT by the formula:

Añnc → End(V ) : Ã 7→ TÃ ◦ ZA. (3)

Lemma. The restriction of the action (2) of Univ on H0 along the projection map
˜Univ→ Univ equals the restriction of the action (3) of Añnc on H0 to the subsemigroup
˜Univ ⊂ Añnc.

Corollary: The central Z ⊂ Añnc acts trivially on H0, and the action of Añnc on H0

descends to an action of Annc.

Local operators:
A primary operator of conformal dimension ∆ is a gadget ϕ that assigns to every

complex cobordism Σ equipped with:
• distinct interior points z1, . . . , zn ∈ Σ̊ , and
• non-zero tangent vectors vi ∈ TziΣ ,
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and to every object V ∈ C(∂inΣ), a linear map

ZΣ,ϕ(z1;v1),...,ϕ(zn;vn) : V → FΣ(V ).

These maps are homogeneous of degree ∆ in the vi’s:

ZΣ,ϕ(z1;v1),...,ϕ(zi;avi),...,ϕ(zn;vn) = a∆ZΣ,ϕ(z1;v1),...,ϕ(zn;vn) ∀a ∈ C×, (4)

and agree with ZΣ when n = 0. Moreover, they satisfy the same axioms that the ZΣ

satisfy (naturality in V and in Σ, compatibility with disjoint union, and with composition
of cobordisms).

We abbreviate the relation (4) by writing: ϕ(z; av) = a∆ϕ(z; v).

The map ZΣ,ϕ(z1;v1),...,ϕ(zn;vn) is called the evolution operator with point insertions:

z1
z2 z3

ϕ
ϕ ϕ

Σ

ZΣ,ϕ(z1;v1),...,ϕ(zn;vn) : V FΣ(V )

Theorem. (State-operator correspondence) There is a natural bijection{
Primary operators of

conformal dimension ∆

}
←→

{
States ξ ∈ H0 such that

L0(ξ) = ∆ξ and Ln(ξ) = 0 ∀n > 0

}
.

Proof . Given an operator ϕ, the corresponding state ξ ∈ H0 is given by

ξ :=
D

0

ϕ

= ZD,ϕ(0;1

1 ∈ T0D = C
)(1

1 ∈ C ∈ Vec = C(∅)

) ∈ H0.

Conversely, starting from a vector ξ ∈ H0 that satisfies the equations L0(ξ) = ∆ξ and
Ln(ξ) = 0∀n > 0, we proceed as follows. Given a complex cobordism Σ together with
points z1, . . . , zn and tangent vectors vi ∈ TziΣ, choose disjoint embeddings fi : D→ Σ,
fi(0) = zi, and let Σ0 := Σ \ (f1(D̊) t . . . t fn(D̊))

Σ0 :

Σ

z1

D

zn

D

· · ·

f1 fn
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We then define

ZΣ,ϕ(z1),...,ϕ(zn) :=
∏( vi

f ′i(0)

)∆

ZΣ0

(
ξ ⊗ . . .⊗ ξ ⊗−

)
. (5)

Let’s check that this map lands in the right place:

ZΣ0 : H0

∈

⊗ . . .⊗H0

∈
ξ · · · ξ

⊗ V = FD(C)⊗ . . .⊗ FD(C)⊗ V
−→ FΣ0(FD(C)⊗ . . .⊗ FD(C)⊗ V )

= FΣ0∪(Dt...tD)(C⊗ . . .⊗ C⊗ V ) = FΣ(V ). X

�

Given a bunch of primary operatorsϕ1, . . . , ϕn, with corresponding vectors ξ1, . . . , ξn ∈
H0, it’s now easy to adapt the definition (5):

ZΣ,ϕ1(z1;vi),...,ϕn(zn;vn) :=
∏( vi

f ′i(0)

)∆i

ZΣ0

(
ξ1 ⊗ . . .⊗ ξn ⊗−

)
. (6)

Here, as before, Σ0 = Σ\(f1(D̊)t. . .tfn(D)) for some fi : D→ Σ satisfying fi(0) = zi.

Descendants:
There’s a more general notion, called a descendant operator: In the definition of pri-

mary operator, just replace the tangent vectors vi by a local coordinate ji : C→ Σ : 0 7→
zi (a finite order jet suffices) and require the equation ϕ(z; j ◦ (z 7→ az)) = a∆ϕ(z; j) to
hold.

Theorem. (State-operator correspondence) There is a natural bijection:{
Operators of conformal dimension ∆

}
←→

{
ξ ∈ H0

∣∣∣L0(ξ) = ∆ξ
}
. (7)

The proof goes along the same lines.

Modularity
Let C := C(S1).
Recall that the bilinear functor � := FPants : C ⊗ C → C is called the fusion product.
For V,W ∈ C, we have:

F : V ⊗W 7→ V �W

and
Z : V ⊗W → V �W.

One can think of the latter as a bilinear map V ×W → V �W (in much the same way as
the tensor product M ⊗R N of two modules over a ring comes with a canonical bilinear
map M ×N →M ⊗R N ).
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Note: The bilinear map ZΣ genuinely depends on the complex structure on Σ. But the
fusion product FΣ is essentially independent of the complex structure.

For simplicity, let us restrict to only using pairs of pants Σ that are embedded in C,
where the boundary circles are round, and parametrized by z 7→ az+ b with a, b ∈ C. We
can easily generalise the fusion functor to define the “n-fold fusion”, as follows. Let

D(n) :=

{
n non-overlapping little circles in D with

∂ parametrized by z 7→ az + b with a, b ∈ C .

}
(8)

Associated to every P ∈ D(n), we have a functor FP : C ⊗ . . .⊗ C → C.

These assemble to an action of D = {D(n)}n∈N, the operad of framed little discs, on the
category C. Moreover, given P1, P2 ∈ D(n), for each homotopy class of path γ : [0, 1]→
D(n) from P1 to P2, there is an associated invertible natural transformation FP1 → FP2

path in D(n)

Aj
A′j

obtained as the composite of a zig-zag of invertible natural transformations induced by

the TÃ, where A = ∈ Univ is equipped with a canonical lift to an element Ã ∈
˜Univ ⊂ Añnc. All in all, we have:

fusion product: −�−

∂inΣ

∂outΣ

braiding β: twist θ:

⇒ C is a balanced tensor category. (cf [video synoptic chart of tensor categories] avail-
able at https://people.math.osu.edu/penneys.2/Synoptic.mp4).

C is in fact modular.
For that, three more properties need to be checked (no extra data needed):

• C is rigid (all objects admit duals)
• it’s ribbon (θX)∨ = θ∨X .
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• C is non-degenerately braided (the S-matrix is invertible)
The last condition is equivalent to Z2(C) = Vecfd, where

Z2(C) :=
{
V ∈ C

∣∣ β+
V,W = β−V,W : V �W → W � V, ∀W∈C

}
is the Müger center of C, and β+

V,W := βV,W , β−V,W := β−1
W,V .

Proof that the braiding is non-degenerate.

Given an object V ∈ C, let us write V and V for the functors C → C given

by W 7→ F (V ⊗W ) and W 7→ F (W ⊗ V ), respectively. The ‘underbraiding’ and

‘overbraiding’ produce natural transformations

V : V ⇒ V and V : V ⇒ V

We must show that the only simple object V ∈ C that satisfies

V = V (9)

is the unit object 1C .
Composing the inner (red) boundary circle of (9) with

out
, we may assume without

loss of generality that it is also labelled ‘out’. Further composing (9) with
we learn that

V

b+

= V

b−

(10)

Redrawing the above cobordisms in a different way (without changing the topology), the
equality (10) is an equality between two natural transformations

V

b+ = b−
−−−−→ V (11.a)

The natural transformation b+ is the one where V travels through the front tube, and the
natural transformation b− is the one where it travels through the back tube. If one of the
tubes is snipped, then we still have one but not the other of the two natural transforma-
tions:

V
b+−→ V (11.b)
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V
b−−→ V (11.c)

Claim: We have an inclusion: F
project onto 1C

↪→ F
identity functorIt follows that we have a pullback

diagram:
F

F

F

F

↪→

↪→

↪→

↪→

By the first part of the claim, the functors (11.a), (11.b), and (11.c) fit into a commutative
diagram (the black arrows in the diagram below). And by the second part of the claim,
we can complete this commutative by taking pullbacks (the red arrows):

V V

V V

V V

V V

b+

b−

b+=b−

⊃ ⊃

⊃

∼=

⊃

⊃ ⊃

⊃ ⊃

The maps labelled ‘b+’, ‘b−’, and ‘b+ = b−’ are all isomorphisms, therefore so is their
pushout. That pushout, which is an isomorphism, is a map V ⊗ 1C → 1C ⊗ V in C ⊗ C.
So we must have V ∼= 1C . �

13


