Exercise 1. The Virasoro algebra is the universal central extension of the Witt algebra.

Let \mathfrak{g} be a Lie algebra, and let A be a vector space. A 2-cocycle is a bilinear map $\omega : \mathfrak{g} \times \mathfrak{g} \to A$ which is antisymmetric, and satisfies

$$\sum^{3} \omega([X,Y],Z) = 0.$$

Given a 2-cocycle, one can form a central extension $\tilde{\mathfrak{g}} := \mathfrak{g} \oplus A$, with Lie bracket $[(X, a), (Y, b)]_{\tilde{\mathfrak{g}}} := ([X, Y]_{\mathfrak{g}}, \omega(X, Y))$

which fits into a central extension $0 \to A \to \tilde{\mathfrak{g}} \to \mathfrak{g} \to 0$ (an extension such that $A \subset Z(\tilde{\mathfrak{g}})$). If the cocycle can written in the form

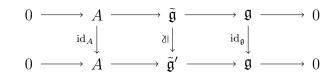
$$\omega(X,Y) = \mu([X,Y])$$

for some linear map $\mu : \mathfrak{g} \to A$ (typically not a Lie algebra homomorphism), then we say that ω is a trivial 2-cocycle, and write $\omega = d\mu$.

Theorem. The second Lie algebra cohomology group

$$H^{2}(\mathfrak{g}; A) := \frac{\{2\text{-cocycles}\}}{\{\text{trivial } 2\text{-cocycles}\}}$$

is in bijection with the set of isomorphism classes of central extensions of \mathfrak{g} by A, where two central extensions $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{g}}'$ are <u>isomorphic</u> if there is a commutative diagram



where the two outer vertical maps are identity maps.

Proof outline. \bigcirc We already saw how to construct a central extension from a 2-cocycle. Suppose now that $\omega_2 - \omega_1 = d\mu$. Then

is an isomorphism. So the map $\{2\text{-cocycles}\} \rightarrow \{\text{central extensions}\}\ \text{descends to a map}\ H^2(\mathfrak{g}; A) \rightarrow \{\text{iso classes of central extensions}\}.$

 \bigcirc Given a central extension of \mathfrak{g} by A, pick a splitting

$$0 \longrightarrow A \longrightarrow \tilde{\mathfrak{g}} \xrightarrow{s} \mathfrak{g} \longrightarrow 0$$

(usually not a Lie algebra homomorphism) and let $\omega(X, Y) := [s(X), s(Y)] - s([X, Y])$. Given another splitting, we can write it as $s' = s + \mu$ for some $\mu : \mathfrak{g} \to A$. The corresponding cocycles satisfy $\omega' = \omega - d\mu$. So they're equal in $H^2(\mathfrak{g}; A)$.

The following lemma will be useful:

Lemma. Let \mathfrak{g} be a Lie algebra, and let $X \in \mathfrak{g}$ be such that $\operatorname{ad}(X)$ exponentiates to a 1-parameter family of automorphisms of \mathfrak{g} . For $\xi \in \mathfrak{g}$, let $\xi_t := \exp(t \cdot \operatorname{ad}(X))(\xi)$, so that $\frac{d}{dt}\xi_t = [X, \xi_t]$. Then, for any 2-cocycle ω , we have

$$[\omega] = [\omega_t] \in H^2(\mathfrak{g}),$$

where $\omega_t(\xi, \eta) := \omega(\xi_t, \eta_t)$.

Proof.

$$\omega(\xi_T, \eta_T) - \omega(\xi, \eta) = \int_0^T \left(\frac{d}{dt}\omega(\xi_t, \eta_t)\right) dt$$

$$\underbrace{\frac{d}{dt}\xi_t = [X, \xi_t]}_{\text{(d)}} = \int_0^T \left(\omega([X, \xi_t], \eta_t) + \omega(\xi_t, [X, \eta_t])\right) dt$$

$$\underbrace{\frac{d}{dt}\xi_t = [X, \xi_t]}_{\text{(cocycle identity)}} = \int_0^T \omega(X, [\xi_t, \eta_t]) dt$$

$$\underbrace{\frac{d}{dt}\xi_t = [X, \xi_t]}_{\text{(cocycle identity)}} = \int_0^T \omega(X, [\xi_t, \eta_t]) dt$$

where $\mu(\xi) := \int_0^T \omega(X, \xi_t) dt$.

Suppose that $\operatorname{ad}(X)$ exponentiates to an action of S^1 on \mathfrak{g} by Lie algebra automorphisms. Then letting $\operatorname{avg}_{S^1}(\omega) := \int_{S^1} \omega_t dt$, we have

$$\left[\operatorname{avg}_{S^1}(\omega)\right] = \left[\int_{S^1} \omega_t dt\right] = \int_{S^1} [\omega_t] dt = \int_{S^1} [\omega] dt = [\omega] \quad \text{in } H^2(\mathfrak{g}, A)$$

for any 2-cocycle ω . Given a linear map $\mu : \mathfrak{g} \to A$, let $\mu_t(\xi) := \mu(\xi_t)$, and let us define $\operatorname{avg}_{S^1}(\mu) := \int_{S^1} \mu_t dt$. If a 2-cocycle ω is trivial, i.e., if there exists μ such that $\omega = d\mu$, then there also exists an S^1 -invariant μ with that same property: indeed, letting $\mu' := \operatorname{avg}_{S^1}(\mu)$ we have

$$d\mu' = d(\operatorname{avg}_{S^1}(\mu)) = \operatorname{avg}_{S^1}(d(\mu)) = \operatorname{avg}_{S^1}(\omega) = \omega.$$

From the above discussion, we deduce that

$$H^{2}(\mathfrak{g}; A) = \frac{\left\{S^{1}-\text{invariant } 2\text{-cocycles}\right\}}{\left\{d\mu \mid \mu : \mathfrak{g} \to A, \ \mu \text{ is } S^{1}-\text{invariant}\right\}}$$

Exercise:

Let $\mathbb{W} = \text{Span}\{\ell_n\}_{n \in \mathbb{Z}}$ be the Witt algebra, with Lie bracket $[\ell_m, \ell_n] = (m - n)\ell_{m+n}$. Prove that $\dim(H^2(\mathbb{W}, \mathbb{C}))$ is one-dimensional, spanned by the Virasoro cocycle.

Exercise 2.

The trivialisation $T_{\tilde{A}}: F_A(V) \to V$ associated to a lifted annulus $\tilde{A} \in Ann_c$.

Let \mathfrak{g} be a simple Lie algebra, and let $k \in \mathbb{N}$ be a level. The corresponding chiral WZW model associates to a closed 1-manifold S the category

 $\mathcal{C}(S) = \{ \text{ level } k \text{ integrable positive energy representations of } \widetilde{L_S \mathfrak{g}} \}$

where $\widetilde{L_S \mathfrak{g}} = L_S \mathfrak{g} \oplus \mathbb{C} \cdot K$ is the central extension of $L_S \mathfrak{g} = C^{\infty}(S, \mathfrak{g})$ defined by the cocycle $\omega_k(f, g) := \frac{1}{2\pi i} \int_S \langle f, dg \rangle$, and 'level k' means that K acts by k.

Let Σ be a complex cobordism, let $C_{in} := C(\partial_{in}\Sigma)$, and let $C_{out} := C(\partial_{out}\Sigma)$. When $\partial \Sigma \neq \emptyset$ (more precisely, when each connected component of Σ has non-empty boundary), we can describe the concrete functor

 $F_{\Sigma}: \mathcal{C}_{in} \longrightarrow \mathcal{C}_{out}.$

associated to the complex cobordism Σ by means of the *Segal commutation relations*:

Definition 1 Given an object $(V, \rho_V) \in C_{in}$, its image $(W, \rho_W) \in C_{out}$ under the functor F_{Σ} comes equipped with a linear map $Z_{\Sigma} : V \to W$ satisfying:

$$\forall f \in \mathcal{O}(\Sigma; \mathfrak{g}) \qquad Z_{\Sigma} \circ \rho_V(f_{in}) = \rho_W(f_{out}) \circ Z_{\Sigma}$$
(1)

where $f_{in/out} := f|_{\partial_{in/out}\Sigma}$.

Moreover, (W, ρ_W) and Z_{Σ} should be universal in the sense that for any $(\tilde{W}, \rho_{\tilde{W}}) \in C_{out}$ and for any linear map $\tilde{Z} : V \to \tilde{W}$ satisfying the same relations as above, there should exist a unique morphism $\kappa : W \to \tilde{W}$ in C_{out} that makes the following diagram commute:

$$V \xrightarrow{Z_{\Sigma}} W \\ \downarrow \\ \tilde{Z} \xrightarrow{\tilde{W}} W$$

If our cobordism is an annulus $A \in Ann(S)$, then the trivialization

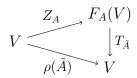
$$T_{\tilde{A}} : F_A \longrightarrow \mathrm{id}_{\mathcal{C}(S)}$$

associated to a lift $\tilde{A} \in \widetilde{Ann}_c$ is constructed as follows. For every $(V, \rho) \in \mathcal{C}(S)$, by the positive energy condition, the action $\rho : \widetilde{L_S \mathfrak{g}} \to \operatorname{End}(V)$ extends to an action, again denoted ρ , of $\widetilde{L_S \mathfrak{g}} \rtimes \widetilde{\operatorname{Diff}}_c(S)$. By definition, this means that we have actions of $\widetilde{L_S \mathfrak{g}}$ and of $\widetilde{\operatorname{Diff}}_c(S)$ on V, satisfying the following covariance relation:

$$\rho(^{\varphi}f) = \rho(\varphi)\rho(f)\rho(\varphi^{-1}) \qquad \forall f \in \mathcal{C}^{\infty}(S, \mathfrak{g})$$

Here, $f \mapsto \varphi f$ denotes the action of (the image of) φ in $\operatorname{Diff}(S)$ on $\mathcal{C}^{\infty}(S, \mathfrak{g}) \subset \widetilde{L_S \mathfrak{g}}_k$.

Since the action of $\widetilde{\text{Diff}}_c(S)$ on V has positive energy, it extends to a holomorphic representation of $\widetilde{\text{Ann}}_c(S)$ on V.¹ We construct the morphism $T_{\tilde{A}} : F_A(V) \to V$ making the following diagram commute



by applying the universal property in Definition 1 to the object $V \in \mathcal{C}(S)$, and to the map $\rho(\tilde{A}) : V \to V$.

Exercise:

Show that the map $\rho(\tilde{A}): V \to V$ satisfies the desired relation (1):

$$\rho(\tilde{A})\rho(f_{in}) = \rho(f_{out})\rho(\tilde{A}) \qquad \forall f \in \mathcal{O}(A;\mathfrak{g}),$$

and that we are thus in a position to invoke the universal property in Definition 1.

¹This is stated as a theorem in [Y. Neretin. *Holomorphic continuations of representations of the group of diffeomorphisms of the circle*; translation in Math. USSR-Sb. 67 (1990), no. 1, 75–97], but the paper does not include a proof of holomorphicity.