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Chapter 1

Introduction

The goal of these lectures is to define and relate several remarkable algebras
that arise from a toric Calabi-Yau threefold (abbreviated CY3) X. The origin
of this story is in mathematical physics, where CY3’s have long been studied in
superstring theory (in particular the vast subject of mirror symmetry, see for
instance [4, 5, 37]). I will not survey any of this physics today.

In the first lecture, we will present a connection(
toric CY3 X

)
⇝

(
toric diagram

)
⇝

⇝
(
brane tiling

)
⇝

(
quiver Q drawn on T2

)
(1.0.1)

where T2 denotes 2d real torus. We will also introduce a notion of shrubby
quivers, which will turn out to be important in the next lecture.

In the second lecture, we will recall the construction of quiver Yangians ([24], an
incarnation of the BPS algebra studied in [19]), or more precisely in the context
at hand, quiver quantum toroidal algebras ([12, 13, 31, 32]) associated to Q:

Ũ = Ũ+ ⊗ Ũ0 ⊗ Ũ−

This is an algebra that acts on vector spaces of BPS states for the CY3 X (we
will discuss the realizations of BPS states in terms of crystal configurations Λ).
For brevity, in these lectures we will only focus on the positive part of this action

Ũ+ ↷ Λ (1.0.2)

Moreover, the algebra Ũ+ is expected to be related to the so-called K-theoretic
Hall algebra ([23, 35]) that geometric representation theory associates to the
quiver Q and potential W of (2.4.2). In other words, one expects a homomor-
phism

Ũ+ Ξ−→ K-HA(Q,W )loc (1.0.3)
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The remarkable thing is that both the action (1.0.2) and the homomorphism
(1.0.3) have the same kernel I+. Therefore, if we define the reduced algebra

U+ = Ũ+
/
I+

then the main result of these lecture notes can be summarized as the following
connection between mathematical physics and representation theory.

Theorem 1.0.1. ([29]) We give explicit generators for the ideal I+, hence an
explicit generators-and-relations presentation of U+. There is a faithful action

U+ ↷ Λ (1.0.4)

(see (3.3.5) for the definition of Λ) and an isomorphism

U+ ∼−→ K-HA(Q,W )loc

/
(torsion) (1.0.5)

As a by-product, we also explicitly describe the K-theoretic Hall algebra in the
right-hand side of (1.0.5) in terms of explicit wheel conditions.

Perspectives:

1. By comparison with related cases, it is reasonable to expect that the so-called
“torsion” above is trivial, so that it may be removed from formula (1.0.5).

2. To remove the localization (i.e. the word “loc”) from formula (1.0.5), one
must define an appropriate integral form of the algebra U+, and in the level
of generality above it is a very interesting and challenging problem.

3. By analogy with the cohomological case ([23] and subsequent works, such as
[21, 22]), one expects there to be a K-theoretic Hall algebra associated to
any Calabi-Yau threefold X, which should match K-HA(Q,W ) for the quiver
Q from (1.0.1) and the potential W of (2.4.2).
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Chapter 2

From CY3s to quivers

The main purpose of this lecture is to explain the arrows in (1.0.1), in which we
start from a toric Calabi-Yau threefold X and we obtain a quiver Q drawn on
the torus (with potential W given by (2.4.2)). Physically, the procedure is that
the quiver encodes D-branes on X. Mathematically, the procedure is such that
there exists an equivalence of derived categories

Db(Coh(X)) ∼= Db(J(Q,W )-mod) (2.0.1)

(see [20]). We will define the Jacobi algebra J(Q,W ) that features in the RHS
in Definition 2.4.2. However, the construction that we will provide for the
connection (1.0.1) is the one that originated in quiver gauge theory ([11, 16, 17,
18], see also [15]). Mathematicians have other constructions, which are more
algebraic but less combinatorial (see for instance [14, Proposition 3.3.1] and
[25]). While we will not even claim the equivalence of all these constructions,
in practice they all give the same answers for many toric Calabi-Yau threefolds.

2.1 Toric Calabi-Yau threefolds

In what follows, the word “variety” means normal integral scheme over C (al-
though you may replace it by “singular complex manifold” if you prefer).

Definition 2.1.1. A threefold X is a variety of (complex) dimension 3. It is
called Calabi-Yau if there exists an isomorphism

OX
∼= KX (2.1.1)

where KX is the line bundle of top (i.e. 3) dimensional differential forms.

While technically speaking, our definition of the right-hand side of (2.1.1) re-
quires X to be smooth, one can get away with allowing X to have certain “mild”
singularities (Gorenstein will be enough for these lectures, because in that case,
one can define the line bundle KX by extension from the smooth locus of X).
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Definition 2.1.2. A threefold X is called toric if it is acted on by the torus

(C∗)3 ↷ X (2.1.2)

such that there exists a dense open subset (C∗)3 ⊂ X on which (C∗)3 acts via

(t1, t2, t3) · (x1, x2, x3) = (t1x1, t2x2, t3x3) (2.1.3)

for all t1, t2, t3, x1, x2, x3 ∈ C∗.

Examples of toric Calabi-Yau threefolds include affine space C3 with the stan-
dard torus action from formula (2.1.3), the conifold

{xy = zt} ⊂ C4 (2.1.4)

(which has a singularity at the origin). The resolution of the conifold is

TotP1

(
OP1(−1)⊕OP1(−1)

)
(2.1.5)

with the torus action induced from C∗ ↷ P1 and dilating the two OP1(−1). For
a more complicated example, we have the suspended pinch point (SPP)

{xy = zt2} ⊂ C4 (2.1.6)

(which has singularities along a line) and its resolutions.

If X is a toric Calabi-Yau threefold, the action (C∗)3 ↷ X of (2.1.2) induces
actions of (C∗)3 on the line bundles OX and KX . The identification (2.1.1) does
not match these two actions on the nose, but only up to a character χ : (C∗)3 ↠
C∗. The Calabi-Yau torus is defined as

T = Ker χ (2.1.7)

Tautologically, it has the property that the isomorphism (2.1.1) is T -invariant.
To see that the character χ is non-trivial (and so T is a proper, i.e. rank 2,
subtorus of (C∗)3), it is enough to calculate it on the dense open subset (2.1.3).
On this dense open, the fibers of O are spanned by the function 1, while the
fibers of K are spanned by the 3-form dx1 ∧ dx2 ∧ dx3. Thus, the character χ is
simply the torus character which scales the aforementioned 3-form, so

χ((t1, t2, t3)) = t1t2t3

Then T = {(t1, t2, t3)|t1t2t3 = 1} = {(u, v, u−1v−1)|u, v ∈ C∗} is indeed rank 2.

2.2 Toric diagrams

We will review the main constructions of toric geometry in the context of Calabi-
Yau threefolds, and refer to [6] for further details and proofs.
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Definition 2.2.1. A cone is a subset of the form{
a1v1 + · · ·+ anvn

∣∣∣a1, . . . , an ∈ R≥0

}
⊂ R3 (2.2.1)

(for various vectors v1, . . . , vn ∈ Z3) which does not contain any pair of opposite
vectors in R3. A face of a cone C is its intersection with any hyperplane H
such that the C lies in one of the two closed half-spaces bounded by H. A fan
is a collection of cones which is closed under taking faces, and such that the
intersection of any two cones in the fan is a face of each of the two cones.

The fundamental theorem of toric varieties states that there is a one-to-one
correspondence between toric threefolds and fans as above (indeed, R3 in (2.2.1)
is simply the real form of the Lie algebra of the torus (C∗)3 from (2.1.2)).

Proposition 2.2.2. (see [6, Section 4.3]) A toric threefold X is Calabi-Yau if
and only if there exists a plane P ⊂ R3 which contains the generating vectors
v ∈ Z3 of all the one-dimensional cones in the fan corresponding to X.

Moreover, we can choose a basis of the plane P so that the aforementioned
generating vectors v intersect P in lattice points. The two-dimensional cones
in the fan will intersect the plane P in a bunch of edges connecting the above
lattice points. The collection of these lattice points and edges is referred to as
the toric diagram of the toric Calabi-Yau threefold X.

s ss
@
@ s ss s s ss ss

@
@

Picture 2.2: The toric diagrams of C3, the conifold and the SPP.

One can read off the singularities of X from its toric diagram. In particular, X is
smooth if and only if the edges give a triangulation of the toric diagram. There-
fore, the toric diagram of the resolved conifold (2.1.5) is obtained by adding a
diagonal to the middle diagram in Picture 2.2.

2.3 Brane tilings

The next step in our procedure arose in quiver gauge theory ([11, 16, 17, 18]).
We refer to loc. cit. for details on this construction (dubbed the “fast inverse
algorithm”), and just sketch it. Start from a toric diagram as in Section 2.2.

1. Draw an outward green arrow perpendicular to each edge of the toric diagram
(this leads to the so-called (p, q)-web that is dual to the toric diagram).
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2. Consider a square large enough to contain the toric diagram, and interpret
it as the 2d torus T2 by identifying opposite edges. The green arrows in the
previous item will partition T2 into polygonal tiles.

3. These polygonal tiles can be colored in red, white and blue such that no three
green arrows intersect, and any intersection of two green arrows is surrounded
by colors as indicated below (with respect to the standard orientation of T2).

Figure 2.1: The allowed colors near an intersection in a brane tiling

We call the above partition and coloring of T2 a brane tiling. It is not true
that any choice of green arrows gives rise to a partition and coloring compatible
with Figure 2.1, but there exists a choice (precisely given by branes on X) which
does.

Figure 2.2: The brane tiling associated to X = C3.

Definition 2.3.1. A dimer model (on the torus) is a bipartite graph drawn
on T2, such that every edge has at least two neighbors, and removing all edges
breaks up T2 into simply connected components.

The brane tiling procedure leads to a dimer model by regarding the red/blue
tiles as vertices, and drawing an edge between a red tile and a blue tile if and
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only if they are on opposite sides of a green intersection (as in Figure 2.1). The
literature on dimer models is vast, see for instance [2, 3, 7] for works that are
closer to the topic at hand.

2.4 Quivers with potential

In the previous Section, we associated a so-called brane tiling (on T2) to the
toric diagram of X, and we showed how this leads to a dimer model. The dual
of the dimer model is the quiver Q associated to X in (1.0.1). This quiver has:

1. A vertex per white region of the brane tiling.

2. An edge connecting any two white regions which are on opposite sides of a
green intersection (as in Figure 2.1).

3. A red/blue face surrounding a red/blue polygonal tile of the brane tiling.

Very importantly, any two faces that share an edge must be of different colors.
Because of the orientation in Figure 2.1, the edges in the quiver can be oriented
to go clockwise around the blue faces and counterclockwise around the red faces.

Figure 2.3: The quiver (drawn on T2) associated to X = C3.

Note that the quiver In Figure 2.3 has 1 vertex, 3 edges and 2 faces. This is due
to Euler’s formula, which says that because the quiver is drawn on a torus, the
number of vertices plus the number of faces must equal the number of edges.

Definition 2.4.1. The path algebra of a quiver Q is given by

CQ =
⊕

path e1...ek in Q

C · e1 . . . ek

(a path p is a sequence of edges e1, . . . , ek, in which the source of each edge ei
is the target of the next edge ei+1) with multiplication given by concatenation

p · p′ =

{
pp′ if the source of p = the target of p′

0 otherwise
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Definition 2.4.2. A potential is an element

W ∈ CQ

which is a linear combination of cycles (i.e. paths that start and end at the same
point). The Jacobi algebra associated to W is

J(Q,W ) = CQ
/(

∂W

∂e

)
∀ edges e

(2.4.1)

where the derivative of the potential with respect to any edge e is defined by

∂e1 . . . ek
∂e

=

k∑
i=1

{
ei+1 . . . eke1 . . . ei−1 if ei = e

0 if ei ̸= e

Note that the Jacobi algebra is unchanged by cyclically permuting the potential,
i.e. replacing e1e2 . . . ek by e2 . . . eke1. For the quivers that we associated to
toric Calabi-Yau threefolds in the previous Sections, we can define the potential

W =

blue face F∑
with boundary e1...ek

e1 . . . ek −
red face F∑

with boundary e1...ek

e1 . . . ek (2.4.2)

For example, the quiver in Figure 2.3 has potential

W = e1e2e3 − e1e3e2

and so its Jacobi algebra is

C⟨e1, e2, e3⟩
/
(e1e2 − e2e1, e2e3 − e3e2, e3e1 − e1e3) = C[e1, e2, e3]

Exercise 1. Work out the brane tiling and the quiver with potential associated
to the conifold, i.e. the toric diagram in the middle of Picture 2.2 (Hint: see
[18, Section 5.2] or [32, Section 4.1]).

Exercise 2. Work out the brane tiling and the quiver with potential associated
to the suspended pinch point, i.e. the toric diagram on the right of Picture 2.2
(Hint: see [11, Section 4.1], [24, Section 2.1] or [31, Section B.1]).

2.5 Shrubby quivers

Recall that the plane R2 is the universal cover of the torus T2 = R2/Z2. This

allows us to lift the quiver Q drawn on the torus to a quiver Q̃ drawn on the
plane, which is periodic, i.e. invariant under translation by Z2. For instance,
in Figure 2.4 we can visualize the periodic quiver associated to the quiver in
Figure 2.3. Clearly, Q̃ also comes with blue and red faces, such that the edges
go clockwise around the former and counterclockwise around the latter.
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Figure 2.4: The periodic quiver associated to X = C3.

The following Definitions originated in [29], and they apply more generally to
all quivers Q drawn on a torus with blue and red faces (such that the edges go
clockwise around the blue faces and counterclockwise around the red faces), not
just to the ones that come from toric Calabi-Yau threefolds.

Definition 2.5.1. A broken wheel refers to a path obtained by removing a
single edge e from the boundary of any face F (of either Q or Q̃). The mirror
image of the aforementioned broken wheel is the path obtained by removing e
from the boundary of the other face F ′ ̸= F incident to e. The edge e will be
called the interface of the broken wheel (and of its mirror image).

Broken wheels are quite relevant for the study of the potential (2.4.2) and its
Jacobi algebra (2.4.1). Specifically, if we consider the derivative of W with
respect to the black arrow (the interface) in Figure 2.5, then we obtain precisely
the difference between the red and blue paths therein.

∂W

∂e
= pred − pblue (2.5.1)

Definition 2.5.2. The quiver Q is called shrubby if given any paths p ̸= p′ in
Q̃ with the same start and end points, at least one of p and p′ contains a broken
wheel whose interface lies in the closed region between the two paths.
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Figure 2.5: A broken wheel (the path in red, denoted by pred) and its mirror
image (the path in blue, denoted by pblue). The black arrow is the interface.

The terminology above is a reference to this work, see [29, Claim 3.24]. More
relevant to our purposes right now is that shrubbiness is a technical condition
on the quiver Q which will allow the contents of the next lecture to run through
(indeed, in the absence of this condition, it is easy to cook up examples of quivers
for which Theorems 3.5.2 and 3.6.2 fail, and significant adjustments would be
necessary in order to fix them). Dmitrii Rachenkov showed me a proof of the
following result while he was a graduate student at SISSA.

Theorem 2.5.3. The quiver Q drawn on T2 that arises from any toric Calabi-
Yau threefold X via the procedure (1.0.1) is shrubby.

The following notions were defined in [29] for any shrubby quiver Q.

Definition 2.5.4. A pre-shrub S is an subgraph of Q̃ which does not contain
the entire boundary of any face, and moreover has the property that if S contains
a broken wheel then it must also contain its mirror image.

Exercise 3. Prove that a pre-shrub cannot contain any oriented cycles (Hint:
see [29, Proposition 3.13]).

Definition 2.5.5. A shrub S is a pre-shrub with a single root, which contains
all the vertices contained in the interior of S (i.e. the area encompassed by the
unoriented cycles contained in S). See Figure 2.6.
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Figure 2.6: The black arrows determine a shrub S (the root is on the bottom).
The orange arrows are in the quiver, but not in the shrub S.

11



Chapter 3

BPS algebras and K-HAs

The main purpose of this lecture is to establish isomorphisms

U+ ∼= S ∼= K-HA(Q,W )loc

/
(torsion) (3.0.1)

where the three algebras above are the reduced BPS algebra, the shuffle algebra,
and the localizedK-theoretic Hall algebra associated to a shrubby quiverQ. The
key notion is the shuffle algebra S, as it provides the connection between the
algebra on the left (which is a quotient, defined in [29], of the quiver quantum
toroidal algebra of [12, 13, 24, 31, 32]) and the algebra on the right (see [23, 35]
for cohomological and K-theoretic Hall algebras of quivers with potential).

3.1 Edge parameters

We will henceforth fix a quiver Q drawn on T2, with blue and red faces such
that the arrows go clockwise around the former and counterclockwise around the
latter; assume that Q is shrubby in the sense of Definition 2.5.2. We will work
over a field of K characteristic zero, which is endowed with edge parameters{

te ∈ K∗
}
e edge of Q

(3.1.1)

These parameters are required to satisfy the following constraint for any face F
of Q whose boundary is traced out by edges e1, . . . , ek

te1 . . . tek = 1 (3.1.2)

If we think of the parameters te as scaling the generators of the path algebra
CQ, then the constraint (3.1.2) precisely implies that the potential W of (2.4.2)
is invariant. For example, for the quiver in Figure 2.3, we will denote the edge
parameters by t1, t2, t3 and they will satisfy the relation t1t2t3 = 1.

Beside the face constraints (3.1.2), the edge parameters are required to be suf-

ficiently generic, in the following sense. For any path p = e1 . . . ek in Q̃, define

tp = te1 . . . tek (3.1.3)
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Then the genericity condition that we require is

|tp| ≠ |tp′ | (3.1.4)

for any paths p, p′ in Q̃ with the same start/end point but different end/start
points, where |·| denotes absolute value with respect to some embedding K → C.

Remark 3.1.1. If the quiver Q comes from a toric Calabi-Yau threefold X as
in (1.0.1), then the natural choice of ground field is K = Frac(RepT ), where T
is the rank 2 torus of (2.1.7). The edge parameters te ∈ K∗ are defined to be
certain characters of T defined in [24], and beside the face constraint (3.1.2),
they will enjoy the property that the product of incoming te’s equals the product
of outgoing te’s at any vertex.

3.2 Quiver quantum toroidal algebras

Let I denote the vertex set of Q. For all i, j ∈ I, let us define

ζij(x) =
αijx

sij

(1− x)δij

∏
e arrow from i to j

(1− xte) (3.2.1)

for any fixed αij ∈ K∗, sij ∈ Z. The following construction is the trigonometric
version ([12, 13, 31, 32]) of the quiver Yangians defined in [24].

Definition 3.2.1. The (half) quiver quantum toroidal algebra Ũ+ is

Ũ+ = K
〈
ei,d

〉
i∈I,d∈Z

/(
relation (3.2.3)

)
(3.2.2)

where if we write

ei(z) =
∑
d∈Z

ei,d
zd

then the defining relations are given by the formula

ei(z)ej(w)ζji

(w
z

)
= ej(w)ei(z)ζij

( z

w

)
(3.2.3)

for all i, j ∈ I. Formula (3.2.3) is interpreted as an infinite collection of relations
obtained by equating the coefficients of all {zawb}a,b∈Z in the left and right-hand
sides (if i = j, one clears the denominators z − w before equating coefficients).

Let Ũ− = (Ũ+)op. The (full) quiver quantum toroidal algebra is defined as

Ũ = Ũ+ ⊗K[hi,d, h
′
i,d′ ]i∈I

d,d′ bounded below ⊗ Ũ− (3.2.4)

modulo certain relations that teach us how to commute elements from the three
tensor factors above with each other. We will not be concerned with these
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relations, as we will only study Ũ+, but the interested reader can find them in
[12, Section 2.2] or [31, Section 4.2]. We note that while the quantities αij and
sij in (3.2.1) can be left arbitrary for the purpose of defining the half algebra

Ũ+, they must be chosen carefully when considering the full algebra Ũ.

Remark 3.2.2. The name “quiver quantum toroidal algebra” reflects the fact
that the reduced versions of (3.2.4) (see (3.6.4)) includes examples such as the
quantum toroidal algebras of glm|n, see [1] (specifically, X = C3, the conifold
and the SPP correspond to (m,n) being (1, 0), (1, 1) and (2, 1), respectively).

3.3 Crystals - reduction I

Consider a quiver Q drawn on a torus with red and blue faces, such that the
edges go counterclockwise around the former and clockwise around the latter.
Bogomolnyi-Prasad-Sommerfield (BPS for short) states can be realized combi-
natorially by a procedure called crystal melting, see [33, 34] (as well as [8, 25, 38]
in the mathematical literature). To define crystals, fix a vertex i0 called the

“origin” and consider paths in Q̃

□ =
{
i0 7→ i1 7→ · · · 7→ ik−1 7→ ik

}
(3.3.1)

An atom is an equivalence class of such paths modulo the relation that identifies
a broken wheel with its mirror image (see Figure 2.5). It is a fact that the
equivalence class of a path is completely determined by the shortest path from
i0 to ik (which is unique) and an integer which keeps track of how many times
we wind around faces of the quiver. Thus, atoms are completely determined by

(ik, n) ∈ Q̃× Z≥0 (3.3.2)

We abuse notation and denote atoms by □ as well, and we let col(□) ∈ I to be

the projection of the endpoint ik from Q̃ to Q. It will be called the color of □.

Definition 3.3.1. A molten crystal configuration (abbreviated mcc) λ is a
finite collection of atoms with the following property: for any □ as in (3.3.1)
and any edge e : ik 7→ ik+1, if the concatenation e□ ∈ λ, then □ ∈ λ.

The intuition behind molten crystals stems from the case X = C3, when Q is the
quiver drawn in Figure 2.3. In this case, atoms are in one-to-one correspondence
with unit boxes in the octant Z3

≥0, and the molten crystal condition on λ says
that if such a box lies in λ, then so do its immediate neighbors in the directions
(−1, 0, 0), (0,−1, 0) and (0, 0,−1). Therefore, in this case a mcc is the same as
a 3d partition (a.k.a. “plane partition”), such as the one represented below.

Definition 3.3.2. Given a molten crystal configuration λ, we call an atom
□ /∈ λ addable to λ if λ∪□ is a molten crystal configuration. Let add(λ) denote
the set of addable atoms to a mcc λ.
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For the 3d partition depicted above, addable atoms are unit boxes that can be

added in the locations . Fix a collection of constants

Γλ,□ ∈ K (3.3.3)

for any mcc λ and any atom □, such that Γλ,□ = 0 unless □ ∈ add(λ). We
assume that the following identities hold

Γλ,□Γλ∪□,■

ζcol(■)col□

(
t■
t□

) =
Γλ,■Γλ∪■,□

ζcol(□)col■

(
t□
t■

) (3.3.4)

for all mcc λ and all atoms □,■. The quantity t□ is well-defined by (3.1.3),
because a broken wheel and its mirror image have the same product of edge
parameters due to (3.1.2). One has an action ([12, 13, 31, 32], based on [24])

act : Ũ+ ↷ Λ =
⊕
mcc λ

K · |λ⟩ (3.3.5)

by the formulas

ei,d|λ⟩ =
∑

□∈add(λ),col(□)=i

td□Γλ,□|λ ∪□⟩ (3.3.6)

with t□ defined in (3.1.3). Formula (3.3.4) is precisely what it takes for relation
(3.2.3) to hold between the operators (3.3.6). We may consider the ideal

Ũ+ ⊃ I+1 = Ker action (3.3.5)
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and define the (half) reduced quiver quantum toroidal algebra as

U+
1 = Ũ+

/
I+1 (3.3.7)

Remark 3.3.3. The true power of the action (3.3.5) stems from the fact that it
can be extended to the full quiver quantum toroidal algebra (3.2.4)

act : Ũ ↷ Λ

However, to do so, one needs to make some specific choices of the constants that
appear in (3.3.3) (see [12, formulas (3.21) and (4.30)] or [31, formula (5.2.1)]).

3.4 Shuffle algebras - reduction II

The following notion is the lynchpin of all our constructions. It originated in
[10], see also [9] for a setting closer to ours.

Definition 3.4.1. The big shuffle algebra is

V =
⊕

n∈ZI
≥0

Vn, where V(ni)i∈I
= K[zi1, z

−1
i1 , . . . , zini

, z−1
ini

]symi∈I

endowed with the following multiplication (let n! =
∏

i∈I ni!)

R(zi1, . . . , zini) ∗R′(zi1, . . . , zin′
i
) = (3.4.1)

Sym

R(zi1, . . . , zini
)R′(zi,ni+1, . . . , zi,ni+n′

i
)

n!n′!

i,j∈I∏
1≤a≤ni

nj<b≤nj+n′
j

ζij

(
zia
zjb

)
Above, “ sym” (resp. “ Sym”) denotes symmetric functions (resp. symmetriza-
tion) with respect to the variables zi1, zi2, . . . for each i ∈ I separately.

Exercise 4. Prove that the operation (3.4.1) is well-defined (i.e. takes values in
V despite the apparent poles at zia − zib) and is associative.

Proposition 3.4.2. There exists an algebra homomorphism

Ũ+ Υ̃+

−−→ V (3.4.2)

which takes ei,d to the function in a single variable zdi1 ∈ Vςi , where

ςi = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
1 on i-th position
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We may consider the ideal

Ũ+ ⊃ I+2 = Ker Υ̃+

and define the (half) reduced quiver quantum toroidal algebra as

U+
2 = Ũ+

/
I+2 (3.4.3)

The fact that this notion agrees with the one of (3.3.7) was observed in [12]. It
is a straightforward check, which boils down to the following result.

Proposition 3.4.3. The action (3.3.5) descends to a faithful action

Im Υ̃+ ↷ Λ (3.4.4)

Proof. For any mcc λ and any atoms □,■, let

Γλ,□∪■ = Γλ,■∪□

denote the quantity in (3.3.4). For any number of atoms □1, . . . ,□n, we define

Γλ,□1∪···∪□n
=

∏n
a=1 Γλ∪□a+1∪···∪□n,□a∏

1≤a<b≤n ζcol(□a)col(□b)

(
t□a

t□b

) (3.4.5)

Successively applying formula (3.3.4) shows that the expression (3.4.5) is sym-
metric in □1, . . . ,□n. With this in mind, applying formula (3.3.6) repeatedly
gives

ei1,d1
. . . ein,dn

|λ⟩ =
∑

□1,...,□n

col(□a)=ia

td1

□1
. . . tdn

□n
Γλ,□n

. . .Γλ∪□2∪···∪□n,□1
|λ ∪□1 ∪ · · · ∪□n⟩

=
∑

□1,...,□n

R(t□1
, . . . , t□n

)Γλ,□1∪···∪□n
|λ ∪□1 ∪ · · · ∪□n⟩

where R = Υ̃+(ei1,d1
. . . ein,dn

). The meaning of the evaluation R(t□1
, . . . , t□n

)
is that we set up a one-to-one correspondence between the parameters t□a

and
the variables zia• of R (the evaluation is defined to be 0 if this one-to-one
correspondence does not exist). From the formula displayed above, it is clear

that any element of Ker Υ̃+ acts on Λ by 0, so (3.4.4) is a well-defined action.

To show that this action is faithful, one needs to establish the following fact:
if a polynomial R has the property that the evaluation R(t□1

, . . . , t□n
) is 0 for

any collection of addable atoms □1, . . . ,□n to any mcc λ, then R = 0. To see
this, it suffices to fix paths

pa : i0 7→ · · · 7→ ia and ra : ia 7→ · · · 7→ ia
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(note that ra should not a cycle, but a path in Q̃ whose start and end points are
different lifts of the same ia ∈ Q). Then for large enough da ∈ N, the numbers{

tda
ra tpa

}
a∈{1,...,n}

do not all satisfy any given algebraic relation due to (3.1.4). Since we can always
find an mcc λ to which we can add the atoms rd1

1 p1, . . . , r
dn
n pn, the fact that

R(td1
r1 tp1

, . . . , tdn
rn tpn

) = 0 for all large enough d1, . . . , dn implies that R = 0.

3.5 Wheel conditions - reduction III

Beside the homomorphism (3.4.2), we have a pairing

Ũ+ ⊗ V ⟨·,·⟩−−→ K (3.5.1)

given by the following formula for all i1, . . . , in ∈ I, d1, . . . , dn ∈ Z and R ∈ V

〈
ei1,d1

. . . ein,dn
, R

〉
=

zd1
1 . . . zdn

n R(z1, . . . , zn)∏
1≤a<b≤n ζibia

(
zb
za

)

|z1|≫···≫|zn|

(3.5.2)

The meaning of the right-hand side is that we set up a one-to-one correspondence
between {z1, . . . , zn} and the variables of R such that each za is plugged into a
variable of the form zia• of R (the pairing is defined to be 0 if this one-to-one
correspondence does not exist). Then we expand the right-hand side of (3.5.2)
as indicated and take the constant term of the resulting power series.

Exercise 5. Show that the pairing (3.5.2) is well-defined, i.e. that it respects
any linear relation between the ei1,d1 . . . ein,dn that is induced by (3.2.3).

Definition 3.5.1. Let S ⊂ V denote the subset of polynomials R which satisfy

R
∣∣∣
z1=zkte1 ,z2=z1te2 ,...,zk=zk−1tek

= 0 (3.5.3)

for any face F = {i0, . . . , ik−1, ik = i0} of Q, which is bounded by edges ia−1
ea−→

ia. The vanishing (3.5.3) is called a wheel condition, inspired by the analogous
notion of [10]: its meaning is that while R can have many variables, we choose
k distinct ones among these variables with first index i1, . . . , ik, and then require
that R vanishes when we specialize the chosen k variables as indicated in (3.5.3).

Exercise 6. Prove that S is a subalgebra with respect to the product (3.4.1).
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We call S the shuffle algebra. We may consider the ideal

Ũ+ ⊃ I+3 =
{
x ∈ Ũ+ s.t.

〈
x,S

〉
= 0

}
and define the (half) reduced quiver quantum toroidal algebra as

U+
3 = Ũ+

/
I+3 (3.5.4)

The following is the main result of [29], and together with Proposition 3.4.3,
shows that all three notions of reduced quiver quantum toroidal algebras are
actually the same. We will henceforth use the notationU+ forU+

1 = U+
2 = U+

3 .

Theorem 3.5.2. If Q is shrubby, we have I+2 = I+3 , i.e. we obtain a pairing

U+ ⊗ S ⟨·,·⟩−−→ K (3.5.5)

non-degenerate in both arguments. Moreover, Υ̃+ induces an isomorphism

Υ+ : U+ ∼−→ S (3.5.6)

Shrubs are the key combinatorial tool which goes into the analysis of the pairing
(3.5.5) and allows us to prove Theorem 3.5.2. Indeed, in [29, (3.26)], we give
a formula for the pairing (3.5.5) as a sum over shrubberies, which are disjoint
union of shrubs. In the absence of the shrubbiness assumption, not only does
our proof fail, but the statement of Theorem 3.5.2 also fails (to fix the statement,
one would need to add more complicated wheel conditions in Definition 3.5.1,
which we do not know how to completely describe). Thus, the analogue of
Theorem 3.5.2 for arbitrary quivers is wide open, though it is known in other
special cases ([26, 28, 30], see [27] for an overview).

3.6 Generators-and-relations

The gist of Theorem 3.5.2 is that reduced quiver quantum toroidal algebras are
not just isomorphic to shuffle algebras, they are dual to them as well. Since
every wheel condition (3.5.3) can be thought of as a linear condition that cuts
out the linear subspace S ⊂ V, its dual with respect to (3.5.5) is an element of

I+ = Ker
(
Ũ+ ↠ U+

)
(3.6.1)

Moreover, because the pairing is explicit, we can work out the aforementioned
elements explicitly. Consider the Laurent polynomial ζ̃ij(x) = ζij(x)(1− x)δij .
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Definition 3.6.1. For every face F = {i0, i1, . . . , ik−1, ik = i0} of Q, which is

bounded by edges ea : ia−1 → ia, consider the formal series of elements of Ũ+

eF (x1, . . . , xk) =

k∑
a=1

x1t2 . . . tea
xa

·

∏
b≻c ζ̃icib

(
xc

xb

)(
−xb

xc

)δibicδb<c

∏
b∼c+1

(
1− xcteb

xb

)
eia(xa) . . . ei1(x1)eik(xk) . . . eia+1

(xa+1) (3.6.2)

In (3.6.2), the notation b ≻ c (respectively b ∼ c + 1) means that b precedes
(respectively immediately precedes) c in the sequence (a, . . . , 1, k, . . . , a+ 1).

Theorem 3.6.2. If Q is shrubby, then the ideal I+ of (3.6.1) is generated by
one coefficient of the formal series (3.6.2) of each total homogeneous degree (in
x1, . . . , xk) per face F of Q.

Theorem 3.6.2 then gives us the following explicit generators-and-relations pre-
sentation of reduced (half) quiver quantum toroidal algebras:

U+ = K
〈
ei,d

〉
i∈I,d∈Z

/(
relation (3.2.3) and eF (x1, . . . , xk) = 0,∀face F

)
(3.6.3)

(it is actually enough to factor out by a single coefficient of eF of every total
given homogeneous degree, and all other coefficients will be redundant). Define

U = U+ ⊗K[hi,d, h
′
i,d′ ]i∈I

d,d′ bounded below ⊗U− (3.6.4)

by letting U− = (U+)op and using the same relations between the three tensor
factors above as between the three tensor factors in (3.2.4).

For the quivers corresponding to X = C3, the conifold and the SPP, we have

U ∼= Ut1,t2(
̂̂
gl1), Ut1,t2(

̂̂
gl1|1) and Ut1,t2(

̂̂
gl2|1)

respectively. As an example, let us recall the first of the algebras in the right-
hand side: its half subalgebra is given by

U+
t1,t2(

̂̂
gl1) = K

〈
ed

〉
d∈Z

/(
relation (3.6.5) and (3.6.6)

)
(as the quiver in Figure 2.3 has a single vertex, we suppress the index i), where

e(z)e(w)(z − wt1)(z − wt2)(zt1t2 − w) =

= e(w)e(z)(zt1 − w)(zt2 − w)(z − wt1t2) (3.6.5)

and
[[ed−1, ed+1], ed] = 0, ∀d ∈ Z (3.6.6)
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Meanwhile, our reduced quiver quantum toroidal algebra is given by

U+ = K
〈
ed

〉
d∈Z

/(
relation (3.6.5) and eFred

= eFblue
= 0

)
where

eFred
(x1, x2, x3) =

∏3
i=1[(x1 − x2ti)(x1 − x3ti)(x3 − x2ti)]

x1x3
2x

3
3(x1 − x3t1)(x3 − x2t3)

e(x1)e(x3)e(x2)

+
t2
∏3

i=1[(x2 − x1ti)(x1 − x3ti)(x2 − x3ti)]

x3
2x

4
3(x2 − x1t2)(x1 − x3t1)

e(x2)e(x1)e(x3)

+
t2t3

∏3
i=1[(x2 − x1ti)(x3 − x1ti)(x3 − x2ti)]

x1x2
2x

4
3(x3 − x2t3)(x2 − x1t2)

e(x3)e(x2)e(x1)

and eFblue
is obtained by replacing {t1, t2, t3} by {t3, t2, t1}.

Exercise 7. Show that modulo relations (3.6.5), relation (3.6.6) is equivalent to

eFred
= eFblue

= 0

The exercise above shows that once we impose the quadratic relations (3.2.3),
the higher degree relations can always be modified by adding multiples of the
quadratic relations, without changing the overall algebra. So while previously
known formulas such as (3.6.6) are simpler than ours, we prefer our more com-
plicated formulas (3.6.2) because they capture the duality between higher degree
relations and wheel conditions for general shrubby quivers.

3.7 K-theoretic Hall algebras

Consider any shrubby quiver Q (drawn on a torus with red and blue faces, such
that the edges go counterclockwise around the former and clockwise around the
latter), together with the potential (2.4.2). For any n = (ni)i∈I ∈ ZI

≥0, we
consider n-dimensional representations of the Jacobi algebra

J(Q,W ) ↷ V = (Vi
∼= Cni)i∈I

i.e. collections of linear maps e : Vi → Vj for every arrow e : i → j, which satisfy
the equations ∂W

∂e = 0 for every e. For example, for the quiver of Figure 2.3, a
representation consists of a single vector space V , endowed with three mutually
commuting endomorphisms e1, e2, e3. Then one would like to consider

K-HA(Q,W )“ = ”
⊕
n∈NI

KT (moduli stack of n-dim reps of J(Q,W )) (3.7.1)

and make it into an algebra via a suitable convolution product that is additive
in n. However, the stack above (and more importantly the stacks of extensions
that give the aforementioned convolution product) are very singular, and so one
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needs to replace the right-hand side of (3.7.1) by something else. In cohomology,
this “something else” is the cohomology of a certain sheaf of vanishing cycles on
a smooth space ([23]). In K-theory, one uses instead categories of singularities
associated to W ([35]). We will not have time to go into the technical details.

Definition 3.7.1. In the appropriate replacement of (3.7.1), T is a torus which
acts on the moduli stack by dilating the linear maps e via certain characters

te : T → C∗

These characters are assumed to satisfy the analogue of (3.1.2) (so that the
potential W is T -invariant) and to be sufficiently generic so that (3.1.4) holds.

We let K = Frac(RepT ) and consider the localized K-theoretic Hall algebra

K-HA(Q,W )loc = K-HA(Q,W )
⊗
RepT

K

Recall the big shuffle algebra in Definition 3.4.1. We have a homomorphism

ι : K-HA(Q,W )loc → V (3.7.2)

by combining [35, Section 9] with [36, Proposition 3.6].

Remark 3.7.2. Different choices of αij and sij in (3.2.1) are accounted for by
different line bundle twists in the convolution product on the K-HA.

The kernel of the homomorphism ι is called the torsion submodule of the K-HA,
and it is precisely what we need to factor out in (1.0.5). Then the connection
between BPS algebras, shuffle algebras and localized K-theoretic Hall algebras
is made precise by the following.

Lemma 3.7.3. If Q is shrubby, the image of ι coincides with S
(3.5.6)∼= U+.

Proof. The fact that Im ι ⊇ S follows from the fact that S is generated by
zdi1 ∈ Vςi (see Theorem 3.5.2, this is where we need the shrubbiness assumption),
and these generators lie in the image of the K-theoretic Hall algebra by a simple
inspection of the stack of ςi-dimensional representations of J(Q,W ). For the
opposite inclusion Im ι ⊆ S, we need to show that ι(any element of the K-HA)
satisfies the wheel conditions (3.5.3). This is explained in [29, Corollary 1.18],
and it follows from the fact that any element of the K-HA satisfies the equations
∂W
∂e = 0 for all edges e.
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