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1 Lyapunov Exponent of the Logistic Map

Consider the logistic map
xn+1 = rxn(1− xn) . (1.1)

(a) Study the fixed points x∗ of the evolution. Starting from xn+1 = f(xn), these can
be found solving x∗ = f(x∗). Show that the only fixed point for r < 1 is x∗ = 0,
while for r > 1 the fixed point is x∗ = 1 − (1/r). Show that this fixed point is
stable only if r < 3. What happens then?

For r > 3.57 . . . , the system becomes chaotic. Computing its Lyapunov exponent is
generally hard, but it can be done for the special case r = 4. Under this assumption,
consider the change of variables

xn = sin2 (πyn) , (1.2)

with the constraint 0 < yn ≤ 1.

(b) What is the Logistic map in the yn coordinates? In the following we will choose
the branch

yn+1 =

{
2yn, 0 < yn ≤ 1/2

2yn − 1, 1/2 < yn ≤ 1
(1.3)

In the yn coordinates, the logistic map can simply be rewritten as

sin2 (πyn+1) = sin2 (2πyn) (1.4)
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The positive branch of equation (1.4) gives

πyn+1 = 2πyn or πyn+1 = π − 2πyn , (1.5)

while the negative branch gives

πyn+1 = 2π − 2πyn or πyn+1 = 2πyn − π (1.6)

The domains of definition are chosen so that both yn and yn+1 are defined on (0, 1].
Whatever brach we choose, the underlying dynamics will be chaotic. However,
since the original logistic map was concave, it makes sense to choose the branch

yn+1 =

{
2yn, 0 < yn ≤ 1/2

2yn − 1, 1/2 < yn ≤ 1
(1.7)

(c) As you have seen in the lecture, for any dynamical map yn+1 = f(yn) the Lyapunov
exponent can be written as

λ = lim
n→∞

1

n

n−1∑
i=0

log
∣∣f ′(yi)

∣∣ . (1.8)

Trivially show that for r = 4, the Lyapunov exponent of (1.3) is λ = log(2).
No matter the value of yn, the absolute value of the derivative of f is always 2,
and therefore the Lyapunov exponent is λ = log(2).

Let’s try to visualise this result. Write a yn ∈ R in base 2.

(d) Show that the Logistic map (1.3) acts as yn+1 = 2yn(mod 2). This means that,
in base two, it shifts the whole digit expression to the left, such that 0.abcd . . .
becomes 0.bcd . . . , with a, b, c, d, · · · ∈ {0, 1}.
Clearly, if yn < 1/2, it can be written as yn = 0.0bcd, so that yn+1 = 2yn = 0.bcd.
On the other hand, if yn ≤ 1/2, it can be written as yn = 0.1bcd, so that yn+1 =
2yn−1 = 0.bcd. Therefore, the new logistic map shifts the number written in base
two to the left, canceling the first digit.

(e) Can you convince yourself that this map is chaotic? Why is the Lyapunov exponent
log(2)?
Assume that you start with two different initial conditions, that differ by δy0, a
very small number. Assume for concreteness that δy0 ≈ 2−N , so that in the base-2
digit expression it has N − 1 zeros and then a one. This means that for n < N ,
the evolution of the two starting points will differ by δyn = 2nδy0 = elog(2)nδy0.
Of course, for n ≥ N , this will not be true anymore, but in the limit δy0 → 0 this
pattern will continue arbitrarily long. Thus, the Lyapunov exponent of this map
is λ = log(2).
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(f) What are the periodic orbits (i.e. a set of points connected by the action of the
map, with a finite period) of this map? Is it an infinite set? Is it dense in (0, 1]?
Rational numbers are periodic orbits. They are a measure-zero, dense set in (0, 1].

2 Random Matrices and Spectral Statistics

Consider a Gaussian matrix model made of real Hermitian (i.e. symmetric) matrices of
dimension 2, so that

P (H) dH =

√
2

(2π)
3
2

e−
1
2
Tr[H2] dH , with dH =

∏
i≤j

dHij . (2.1)

(a) What is the generic form of H? What are its eigenvalues λ±?
The generic form of the matrix is

H =

(
x1 x3
x3 x2

)
(2.2)

and its eigenvalues are

λ± =
x1 + x2

2
±

√(
x1 − x2

2

)2

+ x23 . (2.3)

(b) Compute the probability distribution of the difference between the eigenvalues.
To do so, find ∆λ = λ+ − λ− in terms of the generic parameters of H, and then
compute

P (ω) =

∫
dH P (H) δ(ω −∆λ) . (2.4)

Clearly

∆λ± =

√
(x1 − x2)

2 + 4x23 , (2.5)

and thus

P (ω) =

∫
d3x

√
2

(2π)
3
2

e−
x21+x22

2
−x2

3 δ

(
ω −

√
(x1 − x2)

2 + 4x23

)
(2.6)

Let’s do this tedious computation. We first integrate over x3 to get rid of the delta,
which localises to

x3 = ±1

2

√
ω2 − (x1 − x2)2 . (2.7)
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The integral above is symmetric under x3 → −x3, so we choose the positive branch
and multiply by two at the end. Then, calling f(x3) = ω −∆λ, we can transform
the delta into

δ

(
ω −

√
(x1 − x2)

2 + 4x23

)
=

δ
(
x3 − 1

2

√
ω2 − (x1 − x2)2

)
|f ′(x3)|

, (2.8)

where the above equation is valid in a distributional sense. Putting everything
together, we arrive at

P (ω) =

∫
Ωω

d2x

√
2

(2π)
3
2

e−
(x1+x2)

2+ω2

4
ω√

ω2 − (x1 − x2)2
, (2.9)

where the two-dimensional integration contour is

Ωω =
{
(x1, x2) ∈ R2

∣∣ ω2 − (x1 − x2)
2 > 0

}
. (2.10)

The above integral can be performed with the change of variables

ξ =
x1 + x2

2
, χ = x1 − x2 , (2.11)

where then

P (ω) =

√
2

(2π)
3
2

ω e−
ω2

4

∫ +∞

−∞
dξ e−ξ2

∫ ω

−ω

dχ√
ω2 − χ2

=
ω

2
e−

ω2

4 , (2.12)

(c) Compute the mean level spacing

∆ =

∫ ∞

0
dω ωP (ω) . (2.13)

Find P (s), with s = ω/∆. This distribution is normally called Wigner’s surmise
(for the GOE random matrix class).
A straightforward computation gives ∆ =

√
π. Normally we write the distribution

in the coordinate s = ω/∆, so that

P (s) =
πs

2
e−

πs2

4 (GOE) . (2.14)

It is straightforward to check that this distribution is normalised, and the first
moment is also one. This is commonly calledWigner’ surmise. This is the statistics
for matrices which have also a time-reversal symmetry. For generic hermitian
matrices it is instead

P (s) =
32s2

π2
e−

4s2

π (GUE) . (2.15)

Instead, for hermitian-quaternion matrices we have

P (s) =
218s4

36π3
e−

64s2

9π (GSE) (2.16)
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We now want to look at the distribution of the eigenvalues, for large matrices. We
consider then N ×N hermitian matrices, distributed as

P (H)dH = e
− N

2g2
Tr[H2]

. (2.17)

Here, the parameter g2 sets the energy units, while the factor of N ensures that the
large-N limit is well defined. One then defines, in analogy with statistical physics, the
partition function

Z =

∫
dHe−V (H) =

∫ N∏
i=1

dλi

N∏
k<l

|λk − λl|2 e
− N

2g2

∑
i λ

2
i . (2.18)

Let’s unpack this expression. on the RHS of the first equality, we have the integral of
the probability distribution, as we would in statistical mechanics. Then, this integral
is written in terms of the eigenvalues of the matrix H. Notice the interesting measure,
which is called Vandermonde determinant1. We can rewrite this partition function into
the form

Z =

∫ N∏
i=1

dλi e
−N2Seff (2.19)

where

Seff =
1

2Ng2

N∑
i=1

λ2
i −

2

N2

∑
i<j

log |λi − λj | . (2.20)

Notice that Seff is O(1) in the large-N limit, justifying our previous choice of (2.17).
Moreover, sending N → ∞, the partition function localises on the saddle.

(d) Show that the saddle-point equations for the potential above are

1

Ng2
λi =

2

N2

∑
j ̸=i

1

λi − λj
. (2.21)

Equation (2.21) is derived simply setting

dSeff

dλi
= 0 . (2.22)

(e) The density of eigenvalues is defined as

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi) , so that
1

N

N∑
i=1

f(λi) =

∫
dλ ρ(λ)f(λ) . (2.23)

1Unfortunately we won’t have time to discuss its derivation in details, but if you are interested you can
read about it in many textbooks on Random Matrix Theory.
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We also define the resolvent as

ω0(p) =

∫
dλ

ρ(λ)

p− λ
. (2.24)

Show that

ρ(λ) = lim
ε→0+

− 1

2πi

(
ω0(λ+ iε)− ω0(λ− iε)

)
. (2.25)

The last equation can be found using the distributional identity

lim
ε→0+

1

x± iε
= P 1

x
∓ iπδ(x) . (2.26)

Using this fact in the definition of ω0 gives equation (2.25).

(f) Multiply (2.21) by 1/(λi − p), and sum over the index i. Show that the resulting
equation can be written as

ω2
0(p)−

pω0(p)

g2
+

1

g2
= 0 . (2.27)

Solving the quadratic equation for ω0(p), show that

ρ(λ) =
1

πg

√
1− λ2

4g2
. (2.28)

This is the famous Wigner’ semicircle law.
The LHS of (2.21) becomes

1

Ng2

N∑
i=1

λi

λi − p
=

1

Ng2

N∑
i=1

λi − p

λi − p
+

1

Ng2

N∑
i=1

p

λi − p
=

1

g2
− pω0(p)

g2
. (2.29)

The RHS becomes instead

RHS =
2

N2

∑
i ̸=j

1

(λi − p)(λi − λj)
=

2

N2

∑
i ̸=j

1

p− λj

(
1

λi − p
− 1

λi − λj

)
= −2ω2

0(p)− RHS . (2.30)

This implies that RHS = −ω2
0(p), and combining it with the LHS gives (2.27).

The solution of the quadratic is

ω0(p) =
p

2g2
+

1

g

√
p2

4g2
− 1 . (2.31)

Looking at the discontinuity across the branch cut of the square root we get

ρ(λ) = − 2

2πig

√
λ2

4g2
− 1 =

1

πg

√
1− λ2

4g2
(2.32)
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3 Anti-de Sitter Space

Anti-de Sitter space is the maximally symmetric solution of the Einstein equations

Rµν −
1

2
gµνR+ Λgµν = 0 , (3.1)

with negative cosmological constant (Λ < 0). They can be obtained as the equations of
motions of the Einstein-Hilbert action

S =
1

16πGN

∫
dd+1x

√
g
(
R− 2Λ

)
. (3.2)

A very nice parametrisation of Λ is

Λ = −d(d− 1)

L2
, (3.3)

and in this convention the solution of (3.1) can be embedded into a flat space of dimension
(d+ 2) with signature (−,+, . . . ,+) through the hyperboloid

−X2
0 +

d+1∑
i=1

X2
i = −L2 , (3.4)

equipped with a Minkowski metric

ds2 = −dX2
0 +

d+1∑
i=1

dX2
i (3.5)

In the following, we conveniently assume L = 1 and we will only look at the case of
AdS3.

(a) Consider

X0 =
√
1 + r2 cosh(τ) , X1 = r cos(θ) , (3.6)

X3 =
√
1 + r2 sinh(τ) , X2 = r sin(θ) . (3.7)

Show that it is a parametrisation of the surface (3.4), and that the induced metric
is

ds2 = (1 + r2)dτ2 +
dr2

1 + r2
+ r2dθ2 . (3.8)

These are normally called global coordinates2.
This is a simple but tedious check. It can be also done with softwares like Mathe-
matica.

2In the lecture, Julian used the parameterization ds2 = cosh2(ρ)dτ2 +dρ2 + sinh2(ρ)dθ2. The two can
be connected via r = sinh(ρ).
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(b) Consider

X0 =
1 + τ2 + y2

2y
cosh(ρ) , X1 = sinh(ρ) , (3.9)

X2 =
1− τ2 − y2

2y
cosh(ρ) , X3 =

τ

y
sinh(ρ) . (3.10)

Show that it is a parametrisation of the surface (3.4), and that the induced metric
is

ds2 = dρ2 + cosh2(ρ)

(
dτ2 + dy2

y2

)
. (3.11)

This parametrisation is also written through the coordinates

z = y sech(ρ) , x = y tanh(ρ) , (3.12)

and the associated metric is

ds2 =
dτ2 + dz2 + dx2

z2
, (3.13)

which is normally called the Poincaré patch or Poincaré slicing of AdS3.
Same answer as point (a).

(c) Let’s focus on the Poincaré slicing (3.13), and let’s find geodesics. We want to
minimise the lagrangian

L =

∫
ds =

∫
dλ

√
τ̇2(λ) + ż2(λ) + ẋ2(λ)

z(λ)
. (3.14)

There is a rotational symmetry in the (τ, x) plane, so that we can just look at
geodesics at fixed τ . Try to compute the Euler-Lagrange equations of motion, and
show that the geodesic the connects the points x = σ1,2 on the boundary (z = 0)
is (

x− σ1 + σ2
2

)2

+ z2 =

(
σ1 − σ2

2

)2

(3.15)

The system is also translationally symmetric with respect to x, so we can also
choose σ1 = −σ2 ≡ σ. In this case, the solution we want to check is

x2 + z2 = σ2 . (3.16)

A good parametrisation is then

x(λ) = x , and z(λ) = z(λ(x)) . (3.17)

Therefore, the Lagrangian becomes

L =

∫
dx

√
ż2(x) + 1

z(x)
, (3.18)
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and the equation of motion is

d

dx

(
ż

z
√
ż2 + 1

)
+

√
ż2 + 1

z2
= 0 . (3.19)

It is a tedious but simple computation to check that

z =
√
σ2 − x2 (3.20)

is a solution of the differential equation, for any σ.

(d) The length of this geodesic is strictly speaking divergent. To regularise it, we
introduce a cutoff at z = ε. Show that the length of the regularised geodesics is

ℓ = 2 log

(
|σ1 − σ2|

ε

)
. (3.21)

If we introduce a cutoff at z = ε, the domain of x is in the interval ±σ ∓ ε2/2σ
(up to first non-trivial order in ε). Moreover,√

ż2(x) + 1

z(x)
=

σ

(σ2 − x2)
. (3.22)

All in all, the length integral is

ℓ = 2

∫ σ− ε2

2σ

0

σ dx

(σ2 − x2)
, (3.23)

where we have used that the integrand is even to start from x = 0, adding the two
in front. This integral is elementary and the result is

ℓ = log

(
σ + x

σ − x

) ∣∣∣∣σ− ε2

2σ

0

= 2 log

(
2σ

ε

)
. (3.24)

In getting this result we have also neglected a subleading ε2. Because of translation
invariance, this can also be written as

ℓ = 2 log

(
|σ1 − σ2|

ε

)
. (3.25)

(e) Suppose that σ1,2 are the locations of the insertions of two operators. We can com-
pute the correlation function between them in the geodesic approximation through

⟨O(σ1)O(σ2)⟩ ∼ e−mℓ , (3.26)

where m is the mass of the dual field in the bulk. What result do you get from
(3.26)? Is it the one you would expect from a CFT? What is the dictionary between

9
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the mass m of the dual field and the scaling dimension ∆ of the operator O, in
this approximation?
Using the geodesic approximation, we get

⟨O(σ1)O(σ2)⟩ ∼
ε2m

|σ1 − σ2|2m
. (3.27)

For scalar operators in a CFT we would get

⟨O(σ1)O(σ2)⟩ =
1

|σ1 − σ2|2∆
, (3.28)

which instructs us that, in order to obtain CFT correlators from bulk geodesics,
we need to compensate the divergence, and the dictionary is m = ∆. This is
actually just an approximate result, since the correct result (not in the geodesic
approximation) is m2 = ∆(∆− d).

Bonus : For later purposes, and for your own knowledge, you can also have fun showing
that

X0 =
r

r+
cosh(r+θ) , X1 =

√
r2

r2+
− 1 cos(r+τ) , (3.29)

X2 =
r

r+
sinh(r+θ) , X3 =

√
r2

r2+
− 1 sin(r+τ) , (3.30)

which gives the (non-rotating) BTZ black hole metric, namely

ds2 = (r2 − r2+)dτ
2 +

dr2

r2 − r2+
+ r2dθ2 . (3.31)

In turn, this means that the BTZ black hole is locally equivalent to AdS3. This is
funny, isn’t it?

4 Maldacena-Maoz Wormholes

The Maldacena-Maoz construction of two-boundary Wormholes in AdSd+1 considers
generic metrics of the form

ds2 = dρ2 + cosh2(ρ) dΣ2
d , with ρ ∈ (−∞,+∞) . (4.1)

The geometry (4.1) has a constant negative curvature if and only if dΣ2
d has a constant

negative curvature. We call two-boundary wormhole a geometry with the topology
[0, 1]× Σd. Not all metrics of the form (4.1) have this topology.

10
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(a) Let’s focus on three-dimensional wormholes, and consider

dΣ2
2 =

dzdz̄

(Im z)2
, with Im z > 0 , (4.2)

namely Σ2 = H2, the hyperbolic upper-half plane. Do you remember that this is
just a different parametrisation of the Poincaré patch of AdS3?
This is the same metric as (3.11).

The idea of the construction is to use the simplicity of the hyperbolic upper-half plane to
find geometries with topology [0, 1]×Σ2. In order to do that, we quotient the upper-half
plane H2 with a group Γ, such that Σ2 = H2/Γ. We take Γ to be a discrete subgroup of
PSL(2,R), namely the group of matrices γ with det(γ) = 1. Such matrices γ act on z,
the complex coordinate of H2 as

γ =

(
a b
c d

)
, such that γz ≡ az + b

cz + d
. (4.3)

(b) A well known example is

γ =

(
q1/2 0

0 q−1/2

)
, with q ∈ R+ . (4.4)

What is H2/Γ in this case? Looking at the various parametrisation of Exercise 3,
can you see that this construction is the BTZ black hole?
The matrix γ acts on z as

γz = qz , (4.5)

thus rescales its absolute value. Therefore, H2/Γ can be described by the points
1 < |z| < q (assuming WLOG q > 1). On the boundary this has two periodicities,
one in the argument of z and the other in its absolute value. Therefore, the
boundary has the topology of a torus, and the corresponding geometry is a BTZ
black hole. This can also be seen from the parametrisations of AdS3 given in
Exercise 3.

The idea of the last part of this exercise is to show that it is possible to construct
wormholes such that Σ2 is a two-dimensional sphere with three conical defects. These
geometries give informations about the statistics of the OPE structure constants Cijk.
We focus on matrices with |Tr(γ)| < 2, which are called elliptic.

(c) Consider

γ1 =

(
cos(ϕ1) − sin(ϕ1)
sin(ϕ1) cos(ϕ1)

)
. (4.6)

Show that the fixed point of this map is z = i.
Simply

γ1i =
i cos(ϕ1)− sin(ϕ1)

i sin(ϕ1) + cos(ϕ1)
= i

eiϕ1

eiϕ1
= i . (4.7)
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(d) What is H2/Γ1, with Γ1 the discrete group generated by γ1? You should find it
generates a conical defect.
PSL(2,R) generate conformal transformation that map the upper half plane into
itself, and also circles into circles. To understand what is H2/Γ, it is useful to start
from the locus of points z = iy, with y ∈ R+, and see where is it mapped to. This
locus is a straight (half) line, and it is therefore mapped to a (half) circle. This
half circle is the one that passes through the three points

z1 = i ,

z2 =
0 · cos(ϕ1)− sin(ϕ1)

0 · sin(ϕ1) + cos(ϕ1)
= − tan(ϕ1) ,

z3 =
∞ · cos(ϕ1)− sin(ϕ1)

∞ · sin(ϕ1) + cos(ϕ1)
= cot(ϕ1) .

Moreover, it is not hard to show that the locus of points z = iy and the circle
just defined meet at the point z = i with a relative angle of 2ϕ1. This procedure
can also be reiterated, and we can ask where is the circle we just defined mapped
to under the action of γ1. The answer is clearly to another circle, defined by the
three numbers

w1 = i ,

w2 =
z2 cos(ϕ1)− sin(ϕ1)

z2 sin(ϕ1) + cos(ϕ1)
= − tan(2ϕ1) ,

w3 =
z3 cos(ϕ1)− sin(ϕ1)

z3 sin(ϕ1) + cos(ϕ1)
= cot(2ϕ1) .

It is not hard to foresee that the same happens with− tan(nϕ1) 7→ − tan((n+ 1)ϕ1)
and cot(nϕ1) 7→ cot((n+ 1)ϕ1), for n ∈ N. Therefore, if we want Γ to be a (finite)
group, we can demand ϕ1 = π/m. for m ∈ N+, and H2/Γ has a conical defect at
z = i of opening 2ϕ1.

(e) Consider

γ2 =

(
cos(ϕ2) e−α sin(ϕ2)

−eα sin(ϕ2) cos(ϕ2)

)
, (4.8)

with α ∈ R+. Show that the fixed point of this map is z = e−αi.
Simply

γ2e
−αi =

e−αi cos(ϕ2) + e−α sin(ϕ2)

−i sin(ϕ2) + cos(ϕ2)
= e−αi . (4.9)

The group Γ that gives a sphere with three defects is the discrete group generated by
γ1, γ2 and γ3 = γ2γ1. These quotients are also called Schwarz triangles3.

3https://en.wikipedia.org/wiki/Schwarz_triangle
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5 Universal Asymptotics for 2D CFTs

Let’s consider a two-dimensional CFT on a circle of length 2π, with Hamiltonian

H = L0 + L̄0 −
c

12
. (5.1)

The two Virasoro generators commute with each other, so that the eigenvalues of the
Hamiltonian are

∣∣h, h̄〉, thus labeled by the eigenvalues of L0

∣∣h, h̄〉 = h
∣∣h, h̄〉 and

L̄0

∣∣h, h̄〉 = h̄
∣∣h, h̄〉, with energy

Eh,h̄ = h+ h̄− c

12
. (5.2)

(a) A holographic CFT has a spectral gap between the vacuum and thermal states
(black holes in AdS3). For example, there are no eigenvalues between the vacuum
and the first excited state which has h = c/24 (and similarly for h̄). Show that, in
the low temperature regime (β → ∞), the thermal partition function is

lim
β→∞

Z(β) = eβc/12 . (5.3)

Since there’s a gap, we have

Z(β) =
∑
i≥0

e−βEi = e−βE0

(
1 +

∑
i>0

e−β(Ei−E0)

)
→ e−βE0 = ecβ/12 . (5.4)

(b) Any thermal observable of the system is defined through a torus of the form
S12π × S1β. Moreover, the conformal invariance of the system demands that ob-
servables should depend only on the parameter t = β/2π. However, a different
identification of the thermal and spatial circle implies invariance under the modu-
lar transformation t → 1/t. Thus, show that the minimal modular completion of
the partition function (5.3) is

Z(β) = eβc/12 + eπ
2c/3β . (5.5)

This is rather striking, as the low-energy states severely constrain the distribution
of the high energy states.
The modular transformation of the term coming from the vacuum is

eβc/12 → eπ
2c/3β . (5.6)

Therefore the minimal modular completion of the partition function (which is
modular invariant is)

Z(β) = eβc/12 + eπ
2c/3β . (5.7)
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Let’s consider the high-energy spectrum, looking at the high-temperature limit β → 0
and approximating the partition function to Z(β) = eπ

2c/3β.

(c) Compute the thermal energy Eβ and thermal entropy Sβ of the system.
The thermal energy is

Eβ = −∂βZ(β) =
π2c

3β2
. (5.8)

Through AdS/CFT, this can be shown to be the mass of a BTZ black hole. The
thermal entropy instead is

Sβ = βEβ + log(Z(β)) =
π2c

3β
+

π2c

3β
=

2π2c

3β
. (5.9)

(d) Consider the euclidean BTZ black hole,

ds2 = (r2 − r2+) dτ
2 +

dr2

r2 − r2+
+ r2dθ2 , (5.10)

which is the geometry dual to the CFT thermal state.

– Look at the near-horizon (r = r++ε) limit, and show that the geometry does
not have a conical singularity unless τ is periodic with period β = 2π/r+.
In the near-horizon coordinates, we have

ds2 = 2r+εdτ
2 +

dε2

2r+ε
+ . . . . (5.11)

In the equation above we have also omitted the angular part in dθ2 since it
will not play any role. Let’s change coordinates into

dε√
2r+ε

= dη ⇒ ε =
r+
2

η2 . (5.12)

In this coordinates, the near-horizon geometry becomes

ds2 = r2+η
2dτ2 + dη2 + . . . . (5.13)

To avoid a conical singularity (since at the horizon the black hole geometry
is regular), we need to have r+τ ≃ r+τ + 2π, which mean that τ is periodic
with period β = 2π

r+
. This is the the temperature of the black hole.

– With this information, show that

Sβ =
cπr+
3

=
cA

6
, (5.14)

where A is the area of the BTZ black hole. Notice that this is the famous
Sβ = A/4GN Bekenstein-Hawking entropy, provided c = 3/2GN in AdS-
length units.
Clearly then

Sβ =
2π2c

3β
=

2πr+c

6
=

cA

6
. (5.15)
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(e) Taking the inverse Laplace transform of (5.5), it is possible to show that the high-
energy density of states is given by the Cardy formula

ρ(E) ∼ e2π
√

c
3
E (5.16)

Do that, or show (in a saddle-point approximation) that with the ansatz (5.16),
you get the high-temperature partition function.
Let’s follow the second route which is easier. The thermal partition function is

Z(β) =

∫ ∞

0
ρ(E)e−βEdE =

∫ ∞

0
e2π

√
c
3
E−βEdE (5.17)

The saddle-point equation in the energy is

π

√
c

3E
− β = 0 solved by E =

π2c

3β2
. (5.18)

Notice that this is also the thermal entropy Eβ. Substituting this value we get

Z(β) ≈ eπ
2c/3β , (5.19)

the same high-temperature partition function computed above.

We can actually do something similar to the OPE structure constants. Consider the
four point function (expanded in different channels)

⟨O(0)O(x)O(1)O(∞)⟩ =
∑
hs,h̄s

|COOOs |2xhs−2hO x̄h̄s−2h̄O

=
∑
ht,h̄t

|COOOt |2(1− x)ht−2hO(1− x̄)h̄t−2h̄O (5.20)

The contribution of the identity in the t-channel (ht = 0) has a pole at x = x̄ = 1, which
has to be reproduced by the terms of the s-channel with hs and h̄s large. In particular,
we can expand

1

(1− x)2hO
=

∞∑
n=0

(
2hO + n− 1

n

)
xn . (5.21)

Remembering also the fact that COO1 = 1, we have that the scaling of the square of the
structure constants is

|COOOs |2 ∼
(

hs − 1

hs − 2hO

)(
h̄s − 1

h̄s − 2h̄O

)
∼ h2hO−1

s

Γ(2hO)

h̄2hO−1
s

Γ(2h̄O)
, for hs, h̄s → ∞ .

(5.22)
This information is captured by the Maldacena-Maoz wormhole we studied in the pre-
vious exercise.
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