

# $R_{\rm b}$ and b-tagging efficiency

Loukas Gouskos, Emmanuel Perez, Michele Selvaggi (CERN)

## $\rm R_{\rm b}$ at LEP and SLD



Is 10, 100x better than LEP possible?

#### Double-tag method (ideal case)

$$f_{S} = \epsilon_{b} R_{b}$$

$$f_{D} = \epsilon_{b}^{2} R_{b}$$

$$R_{b} = \frac{f_{S}^{2}}{f_{D}} \text{ and } \epsilon_{b} = \frac{f_{D}}{f_{S}}$$

- Measure ratio of single and double tag hemisphere:  $_{\odot}$  ~ f\_{\_{\rm S}}, f\_{\_{\rm D}}
- Simultaneous extraction of:  $R_b$ ,  $\varepsilon_b$

Advantage: Measure directly b-tagging efficiency from data

#### Expected stat. precision ~

$$\left(\frac{\Delta R_b}{R_b}\right)_{\text{stat}} \approx \frac{\sqrt{N(Z \to b\bar{b})}}{\epsilon_b^2}$$
 ~ 1e-6

#### Double-tag method (with hemisphere correlations)

https://arxiv.org/pdf/hep-ex/9810002.pdf

$$f_{S} = \epsilon_{b}R_{b} + \epsilon_{c}R_{c} + \epsilon_{uds}(1 - R_{b} - R_{c})$$
  
$$f_{D} = (1 + C_{b})\epsilon_{b}^{2}R_{b} + (1 + C_{c})\epsilon_{c}^{2}R_{c} + (1 + C_{uds})\epsilon_{uds}^{2}(1 - R_{b} - R_{c})$$

- Measure single and double tag fractions : f<sub>s</sub>, f<sub>D</sub>
- Extract POIs: R<sub>b</sub>, ε<sub>b</sub>

#### Input from MC:

- Mistag rates:  $\varepsilon_{c}$ ,  $\varepsilon_{uds}$ ,
- tag correlation coefficients: C<sub>b</sub>, C<sub>c</sub>, C<sub>uds</sub>
- theory: R<sub>c</sub>

#### Expected stat. precision ~ 1e-6

Advantage: Measure directly b-tagging efficiency from data

#### Assumptions and selection

- $\circ$  2 years at sqrt(s) = 91.188 GeV
- $\circ$   $\sigma(ee \rightarrow had) = 30050 \text{ pb} (at NLO QCD)$
- N(ee $\rightarrow$  had) = 1.13e12 events
- $\circ~$  no backgrounds ( ee  $\rightarrow$  t t) ~<0.1%
- $\circ$  no "had" preselection (E<sub>vis</sub>, N<sub>tracks</sub>)
  - neglecting bias introduced by preselection

Selection

- N = 2 Durham  $k_{T}$  clustering
- $\cos(\theta_{T}) < 0.7$

#### Efficiency ~ 60%

$$\begin{array}{c} \circ & R_{b} = 0.2155 \\ \circ & R_{c} = 0.1720 \\ \circ & R_{q} = 1 - R_{b} - R_{c} \end{array}$$

# Impact of systematics on $R_{b}$ and $\epsilon_{b}$ precision



Working points:



Loose tagging WPs are preferred to minimise syst. of C<sub>b</sub> to R<sub>b</sub>

## Sensitivity to charm mistag rate



Tight tagging WPs are preferred to minimise impact of charm mistag

#### Comments

 Assuming all systematics of the same size (and independent of the tagging purity), largest sensitivity

 $\circ \quad C_{b} > \epsilon_{c} > \epsilon_{uds} > C_{c} > C_{I}$ 

- To minimise impact of systematic uncertainties, trade-off between possible b-tagging working points of various purities
  - $\circ$  C<sub>b</sub> prefers loose tag WP
  - mistag rates prefer tight WP

#### Systematics at LEP (OPAL)

#### https://arxiv.org/pdf/hep-ex/9810002.pdf

| Source                                                     | $\Delta \epsilon^{ m c}/\epsilon^{ m c}$ (%) | $\Delta \epsilon^{ m uds} / \epsilon^{ m uds}$ (%) | $\Delta R_{ m b}$ |  |
|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------|--|
| Tracking resolution                                        | 1.24                                         | 4.0                                                | 0.00017           |  |
| Tracking efficiency                                        | 0.80                                         | 4.0                                                | 0.00014           |  |
| Silicon hit matching efficiency                            | 0.82                                         | 2.8                                                | 0.00009           |  |
| Silicon alignment                                          | 0.58                                         | 2.1                                                | 0.00008           |  |
| Electron identification efficiency                         | 1.11                                         | 0.5                                                | 0.00015           |  |
| Muon identification efficiency                             | 0.64                                         | 0.2                                                | 0.00009           |  |
| c quark fragmentation                                      | 2.26                                         | -                                                  | 0.00028           |  |
| c hadron production fractions                              | 3.66                                         | -                                                  | 0.00046           |  |
| c hadron lifetimes                                         | 0.55                                         | -                                                  | 0.00007           |  |
| c charged decay multiplicity                               | 1.09                                         | -                                                  | 0.00014           |  |
| c neutral decay multiplicity                               | 2.39                                         | -                                                  | 0.00030           |  |
| Branching fraction $B(D \to K^0)$                          | 1.20                                         | -                                                  | 0.00015           |  |
| c semileptonic branching fraction                          | 2.44                                         | -                                                  | 0.00031           |  |
| c semileptonic decay modelling                             | 2.34                                         | -                                                  | 0.00029           |  |
| Gluon splitting to $c\overline{c}$                         | 0.34                                         | 6.3                                                | 0.00018           |  |
| Gluon splitting to $b\overline{b}$                         | 0.50                                         | 9.3                                                | 0.00027           |  |
| K <sup>0</sup> and hyperon production                      | -                                            | 0.3                                                | 0.00001           |  |
| Monte Carlo statistics (c, uds)                            | 0.66                                         | 2.5                                                | 0.00010           |  |
| Subtotal $\Delta \epsilon^{c}$ and $\Delta \epsilon^{uds}$ | 6.65                                         | 13.3                                               | 0.00090           |  |
| Electron identification background                         |                                              |                                                    | 0.00039           |  |
| Muon identification background                             |                                              |                                                    |                   |  |
| Efficiency correlation $\Delta C^{\rm b}$                  |                                              |                                                    |                   |  |
| Event selection bias                                       |                                              |                                                    | 0.00033           |  |
| Total                                                      |                                              |                                                    | 0.00129           |  |

| Correlation $C^{\rm b} - 1$ (%) | Vertex        | Combined        |
|---------------------------------|---------------|-----------------|
| Same hemisphere events          | $0.02\pm0.02$ | $-0.03\pm0.02$  |
| Momentum correlation            | $0.04\pm0.05$ | $0.06\pm0.03$   |
| Geometrical correlation         | $0.88\pm0.02$ | $0.71\pm0.02$   |
| Component sum                   | $0.94\pm0.06$ | $-0.74\pm0.04$  |
| Overall correlation             | $0.83\pm0.20$ | $0.93 \pm 0.17$ |

 $\frac{\Delta C_{b}}{\Delta \varepsilon_{c}} \approx 20\%$  $\frac{\Delta \varepsilon_{c}}{\varepsilon_{c}} \approx 7\%$ 

• 
$$\Delta \varepsilon_{\rm uds}^{\rm c} / \varepsilon_{\rm uds} \approx 13\%$$

## Results vs purity

**Assumption:** systematics constant over tagging score



- Optimal working point is ~ Loose depending on syst assumptions
- 1% syst. scenarios prefer slightly higher purity because larger relative reduction of error on C<sub>b</sub>

#### Prel. conclusion and next

- Start assessing how systematics scale vs tagging purity
- Most likely this method will require to trust MC to better that 1% to achieve goal  $\Delta \epsilon_{\rm b} / \epsilon_{\rm b} \sim \Delta R_{\rm b} / R_{\rm b} \sim 2e-4$
- Multi tag method to fit all flavor mis-tagging efficiencies and R<sub>b,c,s,ud</sub> from data will rely less on MC modelling
- Scale factors to extrapolate for Z ( $\sqrt{s}=90$  GeV) to ZH ( $\sqrt{s}=240$  GeV) ?

# closer look at the correlation

cf. Emmanuel



- Efficiency dependence with jet momentum
  - max eff at high p (OK)
  - non monotonic vs p (?)
- Correlation dependence with the jet momentum
  - max correlation at p<sub>iet</sub> ~ 30 GeV
  - $\circ$  correlation vanishes at  $p_{jet} \sim E_{beam}$

- Correlation dependence with the tagger
  - max correlation at high purities

When gluon radiation is switched off in Pythia:

- Flat efficiency vs p
- Tagging one leg does not bias the efficiency of the other leg



cf. Emmanuel

gluon radiation responsible for correlation



- B-tagging efficiency increases with b-hadron momentum
- B-tagging efficiency decreases if gluon emission in the same hemisphere

 $\rightarrow N_{frag}$  (number of fragmentation tracks) increases

 $\rightarrow$  SV more easily mistaken for PV



- gluon emission increases number of N<sub>frag</sub> tracks
  - decreases available momentum  $\ddot{f}$  bhadron  $p_B$  and overall  $p_{iet}$  (increase the jet mass)
  - momentum balance  $\rightarrow$  opp. hemisphere also softer

#### Open questions

- Tagging correlation depends:
  - $\circ$  on the tagger purity
  - $\circ$  on the jet momentum
    - correlated with amount of gluon radiation in the event, and relative momentum carried by the bhadron
      - $\rightarrow$  including such information is crucial to understand this effects (IN PROGRESS ..)

systematics ultimately will depend on TH parton shower and fragmentation models

# Backup

#### C-mistag rate efficiency and correlation





## Sensitivity to light mistag rate



Tight tagging WPs are preferred to minimise impact of light quark mistag systematics
 Similar sensitivity than ε<sub>c</sub>, (ε<sub>uds</sub> < ε<sub>c</sub> but R<sub>uds</sub> ~ 3 R<sub>c</sub>)

# Sensitivity to $R_c$



• **Tight** tagging WPs are preferred to minimise impact of R<sub>c</sub> parametric

# Sensitivity to C<sub>c</sub>



Tight tagging WPs are preferred to minimise impact of C<sub>c</sub>, but almost indifferent

# Sensitivity to $C_{uds}$



 Tight tagging WPs are preferred to minimise impact of C<sub>uds</sub>, but almost indifferent