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Introduction

▶ Analysis and visualization are fundamental in particle physics (experimental and
not only)

▶ ROOT is the primary tool for data analysis in high energy physics (not only
collider physics)

▶ Maybe not the reference tool if you are doing detector R&D,
theory/phenomenology, machine learning ⇒ Useful to have an idea on how to use
it since at some point you will use it
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History

HPLOT: ≈mid 70s HTV: ≈early 80s PAW: ≈1985

For a nice presentation on ROOT history and development take a look at
this CERN Data Science Seminar talk by Rene Brun (includes also a recording).
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ROOT in a nutshell

ROOT can be seen as a collection of building blocks, like:
▶ Data analysis: histograms, graphs, functions
▶ I/O: row-wise, column-wise storage of any C++ object
▶ Statistical tools (RooFit/RooStats): rich modeling and statistical inference
▶ Math: non-trivial functions (e.g. Erf, Bessel), optimized math functions
▶ C++ interpretation: full language compliance
▶ Multivariate Analysis (TMVA): e.g. Boosted decision trees, neural networks
▶ Advanced graphics (2D, 3D, event display)
▶ Declarative Analysis: RDataFrame
▶ And more: HTTP server, JavaScript visualization
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ROOT Application Domains
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Resources
▶ ROOT website: https://root.cern/
▶ Training: https://github.com/root-project/training
▶ More material: https://root.cern/get_started/

▶ Includes a booklet for beginners: the "ROOT primer"
▶ Reference guide: https://root.cern/doc/master/index.html
▶ Forum: https://root-forum.cern.ch/
▶ Tutorials: on the ROOT website

I encourage you to install ROOT yourself, just follow the install instructions on the
ROOT website!
▶ It is easiest if you have an un-to-date macOS or Linux OS
▶ On Windows, we recommend the Windows subsystem for Linux (WSL)

If you find any bugs, please help us by opening a GitHub issue!
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The different ways to use ROOT
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Ways to use ROOT

▶ The ROOT C++ command line interpreter
▶ C++ ROOT macros
▶ Compiled C++ using ROOT as a library
▶ As a library in Python code (PyROOT)
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The ROOT C++ interpreter

By typing root in a terminal, you can fire up the ROOT C++ interpreter and execute
arbitrary C++ statements

> root
root [0] int x = 4
(int) 4
root [1] int y = 5
(int) 5
root [2] x + y
(int) 9
root [3]
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Special commands in the ROOT C++ interpreter

Special commands that are not C++ can be typed into the prompt, they start with a
".":

root [0] .<command>

For example:
▶ To quit ROOT, use .q
▶ To issue a shell command, use .! <OS command>
▶ .help or .? gives the full list
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ROOT macros
Put a function with the same name as file in a .C file, for example myMacro.C:

void myMacro() {
std::cout << "Hello World!" << std::endl;

}

You can now run the code when starting the ROOT session:

> root myMacro.C

Or you can run in from within a session:

> root
root [0] .x myMacro.C

Or you can load it and run the function later:

root [0] .L myMacro.C
root [1] myMacro();
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Compiled C++ using ROOT as a library
If you have a main function in the file, you can also compile the code with g++ for
example:

void myMacro() {
std::cout << "Hello World!" << std::endl;

}

int main() {
myMacro();

}

In the compilation command, you need to add the ROOT compiler flags:

> g++ -o myMacro myMacro.C ‘root-config --cflags --libs‘

You can now run your code like any other executable in the shell:

> ./myMacro
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As a library in Python code (also in Jupyter notebooks)

If you import ROOT in a Python session or Python script, you can access ROOT
functionality via its Python bindings (more on this later)

import ROOT

▶ You can also use ROOT in Jupyter notebooks like this
▶ If you want to run a notebook in the cloud, take a look at the

SWAN analysis interface
▶ There is also a C++ kernel for the notebooks that comes with ROOT
▶ Notebooks are a great way to share and explain code to colleagues!
▶ However, for a large analysis project, it is better to organize your code in

Python scrips and modules!
▶ This makes your analysis more reproducible and more independent of the backend
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Histograms, Graphs and Functions
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Histograms
▶ A simple form of data reduction

▶ Can have billions of collisions, the Physics displayed in a few histograms
▶ It is like an empirical density estimator
▶ Possible to calculate momenta: mean, rms, skewness, kurtosis

▶ Collect quantities in discrete categories, the bins

▶ ROOT Provides a rich set of histograms
▶ In multiple dimensions: TH{1,2,3} classes + THN
▶ Holding different precision types

▶ TH1D is a one-dim histogram holding doubles
▶ Have also:

TH{1,2,3}F (float), I (int32), S (int16), C (int8)
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My first Histogram

root [0] TH1D h("myHist", "myTitle", 64, -4.0, 4.0)
root [1] h.FillRandom("gaus")
root [2] h.Draw()
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My first Histogram (in a notebook)

Note| that in Jupyter notebooks (also in SWAN), the figure is not shown directly. You
have to:

1. Either call gPad->Draw() at the end:

TH1D h("myHist", "myTitle", 64, -4.0, 4.0)
h.Draw()
gPad->Draw()

2. Or you can create a TCanvas and draw it:

TCanvas c1;
TH1D h("myHist", "myTitle", 64, -4.0, 4.0);
h.Draw();
c1.Draw();
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Functions

▶ Mathematical functions are represented by the TF1 class
▶ They have names, formulas, line properties, can be evaluated as well as their

integrals and derivatives
▶ Numerical techniques for generic cases
▶ Automatic differentiation can be used for derivatives

Option Description
"SAME" superimpose on top of existing pic-

ture
"L" connect all computed points with a

straight line
"C" connect all computed points with a

straight curve
"FC" draw a fill area below a smooth curve

From the TGraphPainter documentation.

TF1

TF12 TF2

TF3
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Functions

Can describe functions as:
▶ Mathematical formulas (written as strings)
▶ C++ functions/functors/lambdas

▶ Implement your highly performant custom function
▶ Python functions

▶ Fast prototyping on the Python side
▶ With and without parameters

▶ Crucial for fits and parameter estimation
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ROOT as a Function Plotter

The class TF1 represents one-dimensional functions (e.g., f (x)):

root [0] TF1 f1("f1","sin(x)/x",0.,10.); // name, formula, min, max
root [1] f1.Draw();

An extended version of this example is the definition of a
function with parameters:

root [2] TF1 f2("f2","[0]*sin([1]*x)/x",0.,10.);
root [3] f2.SetParameters(1,1);
root [4] f2.Draw();
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Another example

root [0] TH1D h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()
root [3] TF1 f("g", "gaus", -8, 8)
root [4] f.SetParameters(250, 0, 1)
root [5] f.Draw("Same")
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Graphs

1. Display points and errors
2. Not possible to calculate momenta
3. Not a data reduction mechanism
4. Fundamental to display trends
5. Focus on TGraph and TGraphErrors

classes in this course
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My first graph

root [0] TGraph g;
root [1] for (auto i : {0,1,2,3,4}) g.SetPoint(i,i,i*i)
root [2] g.Draw("APL")

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

25



Styling your graph

g.SetMarkerStyle(kFullTriangleUp);
g.SetMarkerSize(3);
g.SetMarkerColor(kAzure);
g.SetLineColor(kRed - 2);
g.SetLineWidth(2);
g.SetLineStyle(3);
g.SetTitle("My Graph;The X;My Y");
gPad->SetGrid();
auto txt = "#color[804]{#mu {}^{40}_{20}Ca}";
TLatex l(.2, 10, txt);
l.Draw();
gPad->SetLogy(); 0 0.5 1 1.5 2 2.5 3 3.5 4

The X

1−10

1

10M
y 

Y

My Graph

Ca
20

40  µ

My Graph

See also the TAttMarker documentation for details on the marker styles like
kFullTriangleUp used in this example.
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The Color Wheel

From the TColor documentation.
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Drawing Options Documentation
▶ See the documentation of the THistPainterClass for histogram drawing options

▶ See the documentation of TGraphPainter for the graph drawing options
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Example: stacked histograms

In high energy physics, we often plot stacked histograms, for example to show the
contributions of different processes. This can be doe with the THStack.

TF1 f1{"f1", "gaus", -4.0, 4.0};

TH1D h1("h1", "x", 64, -4.0, 4.0);
TH1D h2("h2", "x", 64, -4.0, 4.0);
TH1D h3("h3", "x", 64, -4.0, 4.0);

THStack hs("hs","");
hs.SetTitle(";x;Events");

std::vector<TH1D*> histos{&h1, &h2, &h3};
std::vector<int> colors{46, 30, 38};

for(int i = 0; i < histos.size(); ++i) {
TH1D & h = *histos[i];
f1.SetParameters(1.0, i - 1, 1.0);
h.FillRandom("f1", 100000);
h.SetFillColor(colors[i]);
hs.Add(&h);

}

hs.Draw();
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Example: efficiency curves
Another common workflow is to draw efficiency
curves with TEfficiency, which also gives
uncertainties.

h_pass = ROOT.TH1D("h_pass", "My histogram", 50, 0, 100.0)
h_total = ROOT.TH1D("h_total", "My histogram", 50, 0, 100.0)

f_gaus = ROOT.TF1("f_gaus", "gaus", 0, 100.0)

f_gaus.SetParameters(1.0, 56.0, 20.0)
h_pass.FillRandom("f_gaus", 40000)
h_pass.SetLineColor(ROOT.kRed)
f_gaus.SetParameters(1.0, 50.0, 20.0)
h_total.FillRandom("f_gaus", 100000)

teff = ROOT.TEfficiency(h_pass,h_total)

c7 = ROOT.TCanvas("rf101_basics", "rf101_basics", 800, 400)
c7.Divide(2)
c7.cd(1)
h_total.Draw()
h_pass.Draw("SAME")
c7.cd(2)
teff.Draw()
c7.Draw()
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Interpreters: C++ and Python
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PyROOT

▶ Python bindings for ROOT
▶ Access all the ROOT C++ functionality from Python

▶ Benefit from C++ performance

▶ Dynamic, automatic
▶ "Pythonizations" for specific cases

In Python, you have also other great scientific and HEP-specific libraries that you
should also consider when they are the right tool for the job!
▶ For example NumPy, Pandas, PyTorch, and Jax
▶ PyROOT is increasingly compatible with standard Python data structures like

NumPy arrays
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PyROOT spinoff: cppyy

▶ ROOTs technology to generate Python bindings
automatically from C++ became an acclaimed
standalong project: cppyy

▶ Prime example for how ROOT does
cutting-edge R & D also on the compiler and
interpreter level

Video on cppyy in the C++ weekly
channel.
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Using PyROOT

Entry point to use ROOT from Python:

import ROOT

All the ROOT classes you have learned so far can be accessed from Python:

ROOT.TH1F
ROOT.TGraph
...
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Example: C++ to Python

C++

> root
root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

Python

> python
>>> import ROOT
>>> h = ROOT.TH1F("myHist", "myTitle", 64, -4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()
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Note: you can also use
individual imports:

>>> from ROOT import TH1F
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Writing new C++ functions in PyROOT
Using ROOT.gInterpreter.Declare(),
you can also define new C++ functions!

ROOT.gInterpreter.Declare("""
void myAdd(double a, double b) {

return a + b;
}
""")

They are now in the ROOT module:

print(ROOT.myAdd(1.0, 2.0))

In a Jupyter notebook, you can also use
the %%cpp magic command:

%%cpp
void myAdd(double a, double b) {

return a + b;
}

print(ROOT.myAdd(1.0, 2.0))

Now you can define performant C++ functions for example to:
▶ define fit functions
▶ transform event data (more on this later)
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C++ interpreter plugin: Clad for Automatic Differentiation
With the Clad plugin, the ROOT interpreter can create derivatives of function with
Automatic differentiation (AD) (detailed presentation).

ROOT.gInterpreter.Declare("""
#include "clad/Differentiator/Differentiator.h"

double myfunc(double x) {
return x*x;

}

// Generate the derivative
auto myfunc_dx_clad = clad::differentiate(myfunc, "x");

// Wrapper for derivative generated by Clad
double myfunc_dx(double x) {
return myfunc_dx_clad.execute(x);

}

""")

gr = ROOT.TGraph()
gr_dx = ROOT.TGraph()
for i, x in enumerate(np.linspace(-2, 2, 200)):

gr.SetPoint(i, x, ROOT.myfunc(x))
gr_dx.SetPoint(i, x, ROOT.myfunc_dx(x))
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Parameter Estimation and Fitting
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What is Fitting?
▶ Estimate parameters of a hypothetical distribution from the observed data

distribution
▶ y = f (x |θ) is the fit model function

▶ Find the best estimate of the parameters θ assuming f (x |θ)
▶ Both Likelihood and Chi2 fitting are supported in ROOT
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Example: Higgs → γγ spectrum

We can fit for:
▶ the expected number of Higgs events
▶ the Higgs mass
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Fitting in ROOT

▶ Create first a parametric function object, TF1, which represents our model
▶ need to set the initial values of the function parameters.

▶ Fit the data object (Histogram or Graph):
▶ Call the Fit method passing the function object
▶ various options are possible (see the TH1::Fit documentation)

▶ Examine result:
▶ get parameter values, uncertainties, correlation
▶ get fit quality estimation

▶ The resulting fit function is also drawn automatically on top of the Histogram or
the Graph when calling TH1::Fit or TGraph::Fit
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Fitting Histograms

Create a histogram, h1, and we want to fit it:

root [0] TH1D h1("myHist", "myTitle", 64, -4.0, 4.0);
root [1] h1.FillRandom("gaus");
root [2] TF1 f1("f1","gaus");
root [3] h1.Fit(&f1);

FCN=27.2252 FROM MIGRAD STATUS=CONVERGED 60 CALLS 61 TOTAL
EDM=1.12393e-07 STRATEGY= 1

ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Constant 7.98760e+01 3.22882e+00 6.64363e-03 -1.55477e-05
2 Mean -1.12183e-02 3.16223e-02 8.18642e-05 -1.49026e-02
3 Sigma 9.73840e-01 2.44738e-02 1.69250e-05 -5.41154e-03

For displaying the fit parameters:

root [4] gStyle->SetOptFit(1111);

myHist
Entries  5000
Mean   0.008152
Std Dev     1.016

 / ndf 2χ   47.5 / 53
Prob   0.6874
Constant  4.3± 246.5 
Mean      0.01436± 0.01047 
Sigma     0.010± 1.003 
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Creating the Fit Function

How to create the parametric function object (TF1):
▶ We can write formula expressions using functions:

TF1 f1("f1","[0]*TMath::Gaus(x,[1],[2])");

▶ we can use the available functions in ROOT library and stl
▶ [0],[1],[2] indicate the parameters.
▶ We could also use meaningful names, like [a],[mean],[sigma]

▶ There are pre-defined functions

TF1("f1","gaus");

▶ pre-defined functions available: gaus, expo, landau,
breitwigner,crystal_ball,pol{0,1..,N}, cheb{0,1,...10},xygaus„bigaus
▶ see full list in the documentation of TH1::Fit(), and also in the

TFormula documentation
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RooFit: ROOT toolkit for complex fitting
▶ ROOT fitting can handle complicated functions...

▶ ...but requires much code when fitting complex models
▶ RooFit provides functionality for building fitting models

▶ complex model building from standard components
▶ composition with addition product and convolution

▶ Fitting often requires normalization of PDFs
▶ not always trivial and RooFit does it automatically

▶ RooFit provides also
▶ MC data generation from model
▶ advanced visualization of fitting results
▶ simultaneous fit to different data samples
▶ full model description for reusability
▶ built-in optimization for optimal computational

performances
▶ necessary for acceptable performance in complex fits

For more info, see the manual or the RooFit courses.
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Likelihood fits in HEP

Unbinned likelihood fits
▶ often many events
▶ sums of PDFs of different types

Binned likelihood fits
▶ often more params. than data points
▶ many per-bin nuisance parameters

There are also often combinations of many binned and unbinned channels.
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The need for an optimized data modeling library

▶ Minimizing NLL(x⃗ , θ⃗) with respect to θ⃗ is done with the Minuit package, which
uses numerical differentiation

▶ In num. diff, parameters are one at a time before re-evaluating the function
▶ ⇒ idea: caching all intermediate results and re-evaluate only what is needed

parameters

pdf components

pdfs

likelihood

p5

g2

f1

NLL

▶ Drastically decreases the cost of gradient evaluation

This is one of the central concepts in RooFit, enabling fits with 100s of pdfs and 1000s
of parameters.
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How RooFit models are implemented

▶ Computation graph represented by
C++ objects

▶ Objects are instances of classes that
inherit from RooAbsArg class

▶ Top-level node is evaluated via chain
of virtual function calls

▶ Has also some overhead from caching
mentioned before The computation graph for a simple RooFit model.

Model definition by user is done usually at the level of declaring these C++ classes,
although there are higher-level frameworks on top of RooFit.
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RooFit example
Define variables (observables and params.):

RooRealVar x{"x", "x", 0, 0, 10}; // observable

RooRealVar mu{"mu", "mu", 4, 0, 10};
RooRealVar sigma{"sigma", "sigma", 1, 0.01, 10};
RooRealVar c{"c", "c", -0.1, -10, -0.001};

Define pdf (here, Gaussian plus expo.):

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};
RooExponential expo{"expo", "expo", x, c};
RooAddPdf model{"model", "0.2 * gauss + 0.8 * expo",

{gauss, expo}, {RooFit::RooConst(0.2)}};

Sample toy dataset:

std::unique_ptr<RooDataSet> data{model.generate(x, 10000)};

Fit model to data with likelihood minim.:

std::unique_ptr<RooFitResult> res{model.fitTo(*data)};
res->Print();

Plotting

RooPlot* frame = x.frame();
data->plotOn(frame);
model.plotOn(frame);
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Normalization of pdfs
Functions in RooFit can be evaluated with getVal():

RooAbsReal &func = ...;
double val1 = func.getVal();
param.setVal(4.0);
double val2 = func.getVal(); // value updated automatically

But the value of a pdf is not well defined without specifying which variables to
normalize over!

RooAbsPdf &pdf = ...;
double val3 = pdf.getVal(); // not okay!

You have to pass a "normalization set" to evaluate a pdf.

RooArgSet normSet{x1, x2};
double val4 = pdf.getVal(normSet);
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RooFit takes care of the integrals

▶ Normalization is done automatically
▶ Functions can be queried for analytical

integral capabilities
▶ Similar interface for sampling as well

▶ RooFit evaluates your likelihood with
as little numerical integrals as possible

Conditional pdf example:

p(x |y) = p(x , y)

p(y)
=

p(x , y)∫
p(x , y)dx

Observable subdomain example:

p(x |subrange) = p(x)

∫
full p(x)dx∫

subrange p(x)dx

Define "model" as a pdf depending on x
and y without caring about integrals:

model = ...

NLL using p(x,y):

nll1 = model.createNLL(dataXY);

NLL using p(x,y), restricted to defined
subrange:

nll2 = model.createNLL(dataXY, Range("subrange"));

Conditional NLL using p(x|y):

nll3 = model.createNLL(dataXY, ConditionalObservables(y));

More on this in the RooFit conditional fit tutorial.
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RooFit Pythonizations

Analyzers prefer Python:
▶ they want RooFit to be more

"pythonic"
▶ they want interoperability with

NumPy and Pandas

ROOT provides:
▶ Pythonizations of functions and

classes, e.g., take builtin Python
objects as arguments

▶ RooFit dataset classes interoperable
with NumPy and Pandas

import ROOT

x = ROOT.RooRealVar("x", "x", -5, 5)
y = ROOT.RooRealVar("y", "y", -5, 5)
z = ROOT.RooRealVar("z", "z", -5, 5)

# Create background pdf poly(x)*poly(y)*poly(z)
px = ROOT.RooPolynomial("px", "px", x, [-0.1, 0.004])
py = ROOT.RooPolynomial("py", "py", y, [0.1, -0.004])
pz = ROOT.RooPolynomial("pz", "pz", z)
bkg = ROOT.RooProdPdf("bkg", "bkg", [px, py, pz])

data = bkg.generate((x, y, z), 20000)

df = data.to_pandas()

x y z
0 -2.365318 4.625480 3.836555
1 -3.884152 -0.374631 -0.421798
2 -4.859738 3.288175 -1.899461
3 -2.307831 2.966785 0.909296
4 -1.253818 3.671417 3.595242
... ... ... ...
19995 -0.433255 2.272059 -4.670626
19996 4.141638 1.365243 -0.250328
19997 -1.394192 0.792205 -1.647825
19998 -4.075001 0.499360 0.730352
19999 4.977131 1.158074 -0.679951

[20000 rows x 3 columns]
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Reading and Writing Data

51



The ROOT File

▶ With ROOT, you can write objects to files that are represented by TFile instances
▶ .root files are binary and can be compressed (transparently for the user)
▶ TFiles are self-descriptive:

▶ The information how to retrieve objects from a file is stored with the objects

▶ ROOT files can contain simple tabluar
data (aka. "n-tuples")

▶ It can also also contain arbitrary
custom C++ classes

In case of future need: a
tutorial on how to save your custom classes. Example of the custom classes saved in the

CMS reconstruction output ROOT files.
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TFile in Action

TFile f("myfile.root", "RECREATE");

Option Description
NEW or CREATE Create a new file and open it for writing.

If the file already exists, it is not opened.
RECREATE Create a new file. If the file already exists,

it will be overwritten.
UPDATE Open an existing file for writing. If no file

exists, it is created.
READ Open an existing file for reading (default)
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TFile in Action: Writing

TFile f("file.root", "RECREATE");
TH1F h("h", "h", 64, 0.0, 8.0);
h.Write("h");
f.Close();

▶ Write to a file
▶ Close the file and make sure the operation succeeded

> rootls -l file.root
TH1F Jun 24 15:02 2022 h "h"
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TFile in Action: Reading

C++

TFile f("file.root");
TH1F* h = f.Get<TH1F>("h");
h->Draw();

Python

import ROOT
f = ROOT.TFile("file.root")
f.h.Draw();

Get the histogram as an attribute of the TFile instance! Possible only in Python.
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Listing TFile Content
▶ TBrowser: interactive tool

root [0] TBrowser tb

▶ rootls tool: list content

> rootls file.root

▶ TFile::ls() (or just .ls): prints
content

> root file.root
root [0] .ls
TFile** /mnt/file.root
TFile* /mnt/file.root
KEY: TH1D myHist;1 myTitle

root [1] .q

▶ great for interactive usage
The ROOT TBrowser.

Note you can also open the file by passing it as a command line artument to root.
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The ROOT Columnar Format and RDataFrame
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Columns and Rows
▶ High Energy Physics: many statistically independent collision events
▶ Create an event class, serialize and write out N instances into a file?

→ No. Very inefficient!
▶ Organize the dataset in columns

58



The TTree

A columnar dataset in ROOT is represented by the TTree class:

▶ Also called tree columns also called branches
▶ Coloumns can contain different types
▶ Supports any kind of object
▶ One row per entry (or, in collider physics, event)

If just a single number per column is required, you can also use the simpler TNtuple
class.

A modern and simple way to interact with ROOT datasets is to use RDataFrame.

▶ Low-level interfaces to deal with datasets do exists
▶ There are many older scripts around that directly interact with TTrees
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RDataFrame: quick how-to

1. Build a dataframe object by specifying your dataset
2. Apply a series of transformations to your data

▶ filter (e.g., apply some cuts)
▶ define new columns

3. Apply actions to the transformed data to produce results (e.g., filling a histogram)

See the RDataFrame tutorials for a comprehensive feature demo.
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Simple Code Example (Python)

rdf = ROOT.RDataFrame("tree", "file.root")
hist = rdf.Filter("theta > 0").Histo1D("pt")
hist.Draw()

1. Build RDataFrame
2. Cut on theta

3. Fill a histogram with pT and draw it
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Filling multiple histograms

h1 = rdf.Filter("theta > 0").Histo1D("pt")
h2 = rdf.Filter("theta < 0").Histo1D("pt")

h1.Draw() // lazy evaluation: event loop is triggered here
h2.Draw("SAME") // no need to run event loop again!

▶ Book all your actions upfront.
▶ The first time a result is accessed, RDataFrame will fill all booked results
▶ This lazy evaluation means that the iteration over events is only done once!
▶ It is one of key ingredients for RDataFrames high performance
▶ Having a single event loop is particularly beneficial if you have to iterate over many

files that don’t fit in memory
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More on histograms

h = rdf.Histo1D(("myName", "Title;x", 10, 0.0, 1.0), "x")

▶ You can specify a model histogram with:
▶ a name and a title
▶ a predefined axis range and binning

▶ Similar to the TH1 constructor you already know
▶ Here, the histogram is created with 10 bins ranging from 0 to 1, and the axis is

labelled "x"
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Define a new column

mean = d.Filter("x > y")
.Define("z", "sqrt(x*x + y*y)")
.Mean("z");

Define() takes the name of the new column and its expression. Later you can use the
new column as if it was present in your data.
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Think of your analysis as a data flow

d2 = d.Filter("x > 0")
.Define("z", "x*x + y*y")

# d2 is a new data-frame,
# a transformed version of d

# make multiple histograms out of it
hz = d2.Histo1D("z")
hx = d2.Histo1D("x")

You can store transformed data-frames in variables,
then use them as you would use an RDataFrame.

data

filter
x > 0

define
z

histo
z

histo
x

d

d2
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Cutflow reports

d.Filter("x > 0", "xcut")
.Filter("y < 2", "ycut");

d.Report().Print();

When called on the main RDF object, Report() prints statistics for all filters with a
name.

Out[0]: xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %
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Saving data to a file

new_df = df.Filter("x > 0")
.Define("z", "sqrt(x*x + y*y)")
.Snapshot("tree", "newfile.root")

We filter the data, add a new column, and then save everything to file. No boilerplate
code at all.

67



RDataFrame: declarative analysis

df = ROOT.RDataFrame("treename", "file.root")
histo = df.Filter(is_good_entry, ["x","y"])

.Histo1D("x")

▶ full control over the analysis
▶ no boilerplate
▶ common tasks are already implemented
▶ parallelization is not trivial?
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RDataFrame: parallelism

ROOT.EnableImplicitMT()
d = ROOT.RDataFrame("treename", "file.root")
h = d.Filter(is_good_entry, ["x","y"]).Histo1D("x")

▶ full control over the analysis
▶ no boilerplate
▶ common tasks are already implemented
▶ parallelization is automatic!
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Defining new columns with C++
You can always use C++ functions to define your new columns:

ROOT.gInterpreter.Declare("""
auto calculateZ(float x, ROOT::VecOps::RVec<float>& y) {

RVecF out;
for(auto yi : y) {

out.emplace_back(x * yi);
}
return out;

}
""")

rdf = rdf.Define("z", "calculateZ(x, y)")

Column x is of type float, y is a vector of floats, new column is vector of floats.
This was just to demonstrate the principle. If you want to add x + y you better do:

rdf = rdf.Define("z", "x + y")
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ROOT’s cutting-edge features: RDataFrame::Vary()
With the experimental RDataFrame::Vary(), you can efficiently declare variations of
your analysis flow:

%%cpp
auto varyPt(double pt) {

RVecD{pt*0.9, pt*1.1}; // returns a vector of variations
}

nominal_hx = df.Vary("pt", "varyPt", ("down", "up"))
.Filter("pt > k")
.Define("x", "someFunc", ("pt"))
.Histo1D("x");

hx = ROOT.RDF.VariationsFor(nominal_hx)
hx["nominal"].Draw()
hx["pt:down"].Draw("SAME")

This streamlines greatly the treatment of systematic variations!
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RDataFrame::Vary(): Example problem
You have some analysis where you select events with exactly two electrons above some
pT threshold:

rdf = rdf.Filter("nElectron == 2")
// some logic to compute electron pair mass...

rdf = rdf.Define("ptCut", "10.0")
rdf = rdf.Filter("Electron_pt[0] > ptCut && Electron_pt[1] > ptCut")

h = rdf.Histo1D("Dielectron_mass")
h.Draw()

Your professor asks you:

"What if you change the pT cut? Produce all histos with different cut values."

⇒ RDataFrame::Vary() to the rescue!
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RDataFrame::Vary(): A possible solution

%%cpp
auto varyPtCut(double ptCut) {

return RVecD{ptCut - 5, ptCut + 5};
}

rdf = rdf.Filter("nElectron == 2")
# some logic to compute electron pair mass...

rdf = rdf.Define("ptCut", "10.0")
rdf = rdf.Vary("ptCut", "varyPtCut(ptCut)", ("down", "up"))
rdf = rdf.Filter("Electron_pt[0] > ptCut && Electron_pt[1] > ptCut")

h = rdf.Histo1D("Dielectron_mass")
hvars = ROOT.RDF.Experimental.VariationsFor(h)

hvars["nominal"].Draw()
hvars["ptCut:down"].Draw("SAME")
hvars["ptCut:up"].Draw("SAME")
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RDataFrame::Vary(): Example

You are very happy with the solution:

▶ Your whole analysis still runs in a
single event loop

▶ Your new code with the three pT cut
variations is only 50 % slower than
the original code

▶ Can you explain why that is?

In particular for many variations, this
sub-linear computation cost scaling is very
important!
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Wrapping up
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Conclusions

▶ ROOT is a powerful toolkit for the workflows specific to particle physics
▶ For analysis, RooFit and RDataFrame are useful in particular

▶ There is lots of documentation on the internet, and if you are still stuck you will
quickly get help on the very active ROOT forum!

▶ ROOT actively developed by the community for the community
▶ If you have ideas for improvements, don’t hesitate to engage with the developers

▶ ROOT provides you performant algorithms written in C++ that you can use in
Python too, together with many other great Python libraries

Thank you for you attention!
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Backup - ROOT fitting details (if you’re not using RooFit)
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Building more Complex Functions
▶ Any C++ object (functor) implementing

double operator() (double *x, double *p)

struct Function {
double operator() (double *x, double *p){

return p[0]*TMath::Gaus(x[0],p[1],p[2]);
}

};
Function f;
TF1 f1("f1",f,xmin,xmax,npar);

▶ Also a lambda function (with Cling and C++-11)

TF1 f1("f1",[](double *x, double *p){return p[0]*x[0];},0,10,1);

▶ a lambda can be used also as a string expression, which will be JIT’ed by CLING

TF1 f1("f1","[](double *x, double *p){return p[0]*x[0];}",0,10,1);
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Functionality provided by TFormula

TFormula is based on Cling. Additional functionality provided:
▶ better parameter definition

▶ TF1("f1","gaus(x, [Constant],[Mean],[Sigma])");

▶ function composition by concatenating expressions
▶ TF1 fs("sigma","[0]*x+[1]");
▶ TF1 f1("f1","gaus(x,[C],[Mean],sigma(x,[A],[B])");

▶ normalized sum for component fitting
▶ TF1 model("model","NSUM(expo, gaus)", ...);

▶ convolutions
▶ TF1 voigt("voigt", "CONV(breitwiegner, gaus)", xmin, xmax);

▶ can define vectorized functions for faster fitting and evaluation
▶ see vectorizedFit tutorial

▶ support for auto-differentiation (automatic generation of gradient and Hessian)
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Fitting options

▶ Likelihood fit for histograms
▶ option "L" for count histograms; h1->Fit("gaus","L");

▶ option "LW" in case of weighted counts. h1->Fit("gaus","LW");

▶ Default is chi-square with observed errors (and skipping empty bins)
▶ option "P" for Pearson chi-square expected errors, and including empty bins

h1->Fit("gaus","P");

▶ Use integral function of the function in bin h1->Fit("gaus","L I");

▶ Compute MINOS errors : option "E" h1->Fit("gaus","L E");
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Some more Fitting Options
▶ Fitting in a Range

h1->Fit("gaus","","",-1.5,1.5);

▶ For doing several fits
h1->Fit("expo","+","",2.,4);

▶ Quiet / Verbose: option "Q"/"V"
h1->Fit("gaus","V");

▶ Avoid storing and drawing fit function
(useful when fitting many times)
h1->Fit("gaus","L N 0");

▶ Save result of the fit, option "S"

auto result = h1->Fit("gaus","L S");
result->Print("V");

All fitting options documented in reference guide or
User Guide (Fitting Histogram chapter)
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Example of ranged fit.
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Parameter Errors
Errors returned by the fit are computed from the second derivatives of the log-likelihood
function
▶ Assume the negative log-likelihood function is a parabola around minimum
▶ This is true asymptotically and in this case the parameter estimates are also

normally distributed.
▶ The estimated correlation matrix is then:

V̂ (θ̂) =

[(
−∂2lnL(x ; θ)

∂2θ

)
θ=θ̂

]−1

= H−1
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