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Introduction
● Focusing on HEP statistics approaches
● Quantum mechanics/field theory = statistical theory

○ Needed for every interpretation
● Here we will go through

○ Basics of statistics
○ Hypotheses testing
○ Discovery and limit setting
○ Parameter estimation
○ Unfolding

● Should be able to understand these plots at the end of 
this presentation
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https://arxiv.org/abs/1207.7214

https://arxiv.org/abs/1207.7214


Useful references
● G. Cowan, Statistical Data Analysis, Oxford University Press, 1998

○ Related: Cowan’s Academic lectures: indico link
● F. James, Statistical methods in experimental physics, 2nd ed., World Scientific, 2006
● K. Cranmer, Practical Statistics for the LHC, https://arxiv.org/abs/1503.07622
● Cowan et al, Asymptotic formulae for likelihood-based tests of new physics, 

https://arxiv.org/abs/1007.1727

● Commonly used model for the binned likelihood fit in HEP: HistFactory: A tool for creating 
statistical models for use with RooFit and RooStats, https://cds.cern.ch/record/1456844 
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https://indico.cern.ch/event/77830/
https://arxiv.org/abs/1503.07622
https://arxiv.org/abs/1007.1727
https://cds.cern.ch/record/1456844


Basics
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Frequentist statistics
● Probability = outcomes of repeatable observations

● I.e. we need repeatable events
● Does Higgs boson exist? Is the mass of the top quark between 172 and 173 GeV? …?

○ It is either true or false but we do not know which
○ The frequentists tools tell us about outcomes of (hypothetical) repeated experiments

● The preferred theories (models, hypotheses, ...) are those for which our observations would 
be considered “usual”
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Bayesian statistics
● Interpretation of probability extended to a degree of belief

○ The degree of belief is updated based on the observations
● Bayes’ formula
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Prior probability 
for hypothesis H

Probability 
observing data X, 

assuming the 
hypothesis H

Normalisation, i.e. sum of all possible outcomes



Bayesian statistics example
● Assume 2% of the population have COVID19 in a given time
● The tests for COVID19 detect the virus in 90% of the cases and give false-positive (show positive 

result even when there is no COVID19 virus) in 5% of the cases
● The test result is positive, what is the probability that the person has the COVID19 virus?

We can use the Bayes’ formula for this

● P(H) = 0.02 - this is the prior probability, i.e. before we do the test
● P(x,H) = 0.9 - i.e. if the person is positive, what is the likelihood of getting a positive result
● Normalisation = 0.9 x 0.02 + 0.05 x 0.98 - i.e. has the virus and positive test + does not have 

virus and has a positive test
● Using the Bayes’ formula: 

● How would the probability change if the person would do another test and it came back 
positive?
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Frequentist vs Bayesian
● Frequentist

○ Limit of a long term frequency
○ Do not need an infinite sample for the definition to be useful
○ Sometimes no ensemble exists

● Bayesian
○ Probability is a degree of belief
○ Intrinsically subjective (choice of the prior)

■ No golden rule for the choice of priors

● “Bayesians address the question everyone is interested in, by using assumptions no-one 
believes. Frequentists use impeccable logic to deal with an issue of no interest to anyone” - L. 
Lyons
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 Binned vs unbinned - distributions
● Unbinned distributions

○ Requires smooth distributions - i.e. PDF
■ Often not known
■ Can use approximations

● Binned distributions
○ Approximate distributions
○ Binning choice - resolution vs available statistics
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Voigt function 
Breit-Wigner x Gauss



Likelihoods
● What we want is probability of our model describing data (frequentist)
● I.e. “likelihood”:

● Binned-likelihood
○ Probability per bin and combine from all bins

■ No correlations ⇔ product of the per-bin likelihoods
○ Often much simpler than unbinned
○ Depends on binning choice (corrections might be needed)

● Unbinned likelihood
○ Probability per event and combine for all events

■ No correlations ⇔ product over all events
○ No bin-width effects
○ Requires analytical (or approximate functions)
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Eur. Phys. J. C 79 (2019) 290

https://link.springer.com/article/10.1140/epjc/s10052-019-6757-9


Hypothesis testing
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Definitions
● Hypothesis testing is a core of the scientific method

● Hypothesis H specifies the probability for the data, i.e., the outcome of the observation, x
● Possible values of data (x) form the sample space (“data space”)
● The probability for x given H is also called the likelihood of the hypothesis, written L(x|H).

○ E.g. The probability to observe N number of events with a given selection assuming the 
validity of the Standard Model
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Hypothesis testing

● Find a region, W, of the data space where the is 
only small probability α to observe data x 
provided H0 is true - this is the “critical region”

● Reject hypothesis if data is observed in W
● α is called “size” or “significance level” of the test 
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How to confirm a hypothesis?
● Karl Popper: You cannot!
● But you can reject a hypothesis!



How to select the critical region?
● Infinitely many critical regions for a given hypothesis
● No unique way to select it
● Can define an alternative hypothesis H1
● Roughly speaking:

○ Choose the critical region so that the probability of observing data under H0 is low and 
probability of observing data under H1 is high
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Rejecting H0 does not mean “H0 is 
wrong and H1 is right” 

● Frequentist - only outcome of 
repeated experiments

● Bayesian - depends on the priors



Type-I and type-II errors
● Type-I error (false negative)

○ Reject hypothesis H0 if it is true
○ Maximum probability for this is α

● Type-II error (false positive)
○ Accept hypothesis H0 if it is false and H1 is true
○ Occurs with probability β 

● 1 - β is called the “power” of the test
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Test statistics
● Assume that for each event we have a collection of numbers

○ Number of jets, leptons, MET value, …, have multiple bins, …
○ Data (x) will follow some joint PDF for the different observables
○ The critical region is multidimensional - cumbersome to work with

● Can define the boundary of the critical region using an equation of form

● Where                   is the scalar test statistics
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We have turned an N-dimensional 
problem to a 1-dimensional one!



Optimal choice for the test statistics
● How to choose the test statistics?
● Neyman-Pearson lemma: For a test of size α of the simple hypothesis H0, to obtain the highest 

power with respect to the simple alternative H1, choose the critical region W such that the 
likelihood ratio satisfies

everywhere in W and is less than k else - k is a constant chosen such that the test has size α

● The optimal scalar test statistics is then
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p-value
● Level of agreement (compatibility) of data and a given hypothesis (model) H
● p-value -> probability, under assumption of H, to observe data with equal or lesser 

compatibility with H relative to the data we got
○ This is NOT a probability that H is true!
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p-value and significance
● We can define the significance Z as the number of standard deviations (“sigmas”) that a 

Gaussian variable would fluctuate in one direction to give the same p-value
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Gaussian cumulative function



Discovery significance
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Discovery in HEP
● We want to discover new physics (BSM)
● Typically

○ Hypothesis H0, i.e. the “null hypothesis” is the SM prediction
■ “Background-only” hypothesis

○ Alternative hypothesis H1 is your favourite model
● We know what to do

○ Find the P(x,H0) and P(x,H1), i.e. the likelihood
○ Build the test statistics using the ratios
○ Calculate the p-value

■ Reject/accept
● How to get the PDF?

○ Use MC simulation
○ Need to get a distribution of the values

■ Pseudo-experiments/toys!
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We usually use (-2 times) logarithm of 
the ratio



Let’s add systematics
● So far, only considered statistical uncertainty
● In reality, many systematic uncertainties affect the predictions
● Can add the systematics into the likelihood

○ Define “signal strength”, μ, as n = μ.s + b
■ μ = 1 means cross-section as predicted by the model

○ Add “nuisance parameters” to the likelihood
■ Parameters that impact the likelihood, but we are not interested in them, e.g. 

systematic uncertainties
■ Usually, “subsidiary” or “auxiliary” measurements are used to constrain NPs
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Set of measurements

Likelihood Nuisance parameters



Commonly used model
● More and more common approach for including systematics in HEP statistical analysis:

○ include systematic uncertainties as unknown parameters in the model
○ nuisance parameters modifying expectations in a parametric way
○ nuisance parameters constrained by subsidiary measurements

● The binned profile-likelihood:

L(n | θ, k) = ∏i P(ni | Si(θ, k)+Bi(θ, k)) × ∏j G(θj)
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data

data events 
in bin iconstrained parameters:

nuisance parameters (NPs) 
associated to systematic 
uncertainties unconstrained parameters:

parameter of interest (POI or “µ”) + unconstrained nuisance 
parameters (e.g. background normalization parameters)

Poisson

prediction in bin i  
(signal+background)

Gaussian
(or other pdf...)

constraint term 
for nuisance 
parameter j



Profile-likelihood significance
● Define test statistics

● Observing new physics ⇔ excluding background-only hypothesis ⇔ excluding μ = 0
● Only consider upward fluctuations
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Likelihood value that maximises 
the likelihood for all parameters

Maximises L for a given fixed μ

Best fit μ



Wald’s approximation
● Running the fit can take a long time
● We need a PDF for the test statistics ⇔ many fits to toy data

○ For 5 sigma discovery we need ~107 toys!
● Luckily, there is a powerful approximation - Wald’s approximation
● For large n, the likelihood ratio is approximately chi-square distributed!

○ Does not require the likelihood to be chi-square or gaussian distributed!

● Under this assumption, the significance is simply 

● I.e. need to run the fit only twice - unconditional and with μ fixed to 0
○ Get the -2 ln L values for the fits and take the square root of the difference
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Usually a good approximation 
as long as number events in 
each bin is greater than ~10



Look-elsewhere effect
● What if we are looking for a resonance with an unknown mass and see an excess in some mass?

○ Should we just quote the significance for that mass point?
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https://arxiv.org/abs/1606.03833

● Need to take into account the “trials”
○ We are “testing” multiple bins
○ We have more options to find an excess
○ Need to correct for this!

● Significance for a fixed mass point ⇔ local significance
● Significance for the floating mass ⇔ global significance

○ Global significance <= local significance

● How to relate local significance to the global one?
○ No simple recipe
○ Need to run toys

■ Usually only 100s, not millions

https://arxiv.org/abs/1606.03833


Reading significance plots
● Dashed curve = “Expected” median p0

○ p0 for each mass of the SM Higgs 
boson - from MC

● Blue band = 1 sigma variations of the 
p0 value

● Full line = “Observed” p0 value from 
real data

● > 5 sigma at around mH = 125 GeV
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https://arxiv.org/abs/1207.7214

https://arxiv.org/abs/1207.7214


Setting limits
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Setting limits
● What if we do not see any significant excess?

○ We can set limits!
● What values of μ can be excluded with the observed data?

○ I.e. the implied rate for a given μ would be very high for the observed data
○ One-sided test - provide an “upper limit”

● Slightly modify the test statistics used for discovery
○ If μ comes out negative (unphysical) we can compare to the closest model with μ = 0
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This is the test statistics commonly used (e.g. Higgs combinations)



Setting limits - continued
● Settings limits = finding the highest value of μ that results in p-value not smaller than γ

○  γ is usually chosen as 0.05, i.e. 95% confidence level (CL)
○ “What is the largest value of μ that is still compatible with the data?”

● Need to solve for μ
○ Nasty integral equation
○ Can run pseudo-experiments to get the distribution of the test statistics

■ Find μ that leads to pμ  = 0.05 
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Observed value qμ tilde

P-value for a given μ Test statistics
Maximises likelihood 
for a fixed μ



Asymptotic limit settings
● Can use the Wald’s approximation

○ The test statistics approaches chi-square

● Limit estimation in practice (simplified)
○ Get the best fit value of μ and its uncertainty (more on this later)
○ Set μ to +2 sigma (approximately 95%) - this is a starting point of the iterative estimation
○ Calculate the p-value for this this μ

■ If p-value too small, decrease μ, if p-value too large increase μ
■ Repeat! 
■ Stop when the p-value is sufficiently close to 0.05

○ Usually requires O(10) fits 
● If the asymptotic approximation is not valid, have to use toy experiments
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The CLs issue
● Suppose we have a low sensitivity to a particular signal

○ Test statistics for s+b is very similar to background-only
○ There is non-negligible probability to exclude s+b even when we have low sensitivity

■ Can be caused by a downward fluctuation
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Well separated s and b
Low sensitivity to s



The CLs procedure
● Solution to the issue: do not use only p-value for the s+b but divide by p-value for b-only
● Define CLs

● Reject s+b hypothesis if CLs < α
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A. Read et al.

● Reduces “effective p-value”
○ If low sensitivity

● Ratio of p-values
○ Not liked by statisticians 

● Used in almost all HEP searches

https://dx.doi.org/10.1088/0954-3899/28/10/313


Expected limits
● Expected limits can be calculated using the MC prediction

○ Assume background only, what would be the limit on μ in case data = MC?
○ Can do it for several models, e.g. different masses of the Higgs boson

● Frequentist approach
○ Distribution of the p-value ⇔ distribution of the 95% CL limits
○ Can quote median expected limit and 土 1(2) sigma variations
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Parameter estimation
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Estimators
● Often not searching for a new process

○ E.g. Measuring top-quark mass, CKM matrix elements, …
● How to get the parameters from the model with their uncertainties?
● We need the PDF of the estimation
● Parameters are constants of the estimator that characterise the shape

● We want to find some function of data to estimate the parameter(s): 
○ Estimator written with a hat
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Estimators continued
● Repeating the measurement -> get PDF

● We want unbiased estimator (bias = 0) with small variance (small statistical uncertainty)
○ Generally: conflicting requirements
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Estimator

Parameter

PDF



Maximum-likelihood estimate
● Maximum-likelihood estimate ⇔ values of parameters that maximize the likelihood

○ Usually: use negative log likelihood
○ Frequentists statistics: Minimise the NLL (i.e “fit”)

■ Use minimiser tools, e.g. Minuit
○ Bayesian statistics: Sample posterior likelihood, using Markov-chain Monte Carlo (MCMC)

● If the hypothesized θ is close to the true value, then we expect a high probability to get data like 
that which we actually found

● ML estimators are not guaranteed to have any ‘optimal’ properties
○  In practice they’re very good

● Uncertainty of the parameter?
○ Value of θ where the negative log likelihood shifts by one half (1 sigma = 0.5, 2 sigma = 2, 3 

sigma = 4.5, …)
■ Motivated by the Normal distribution where shift of 0.5 happens at exactly 1 sigma
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https://root.cern.ch/download/minuit.pdf


Example: Higgs mass measurement - https://arxiv.org/abs/1503.07589
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Best fit mass parameter

Uncertainty 

Likelihood scan wider 
when systematic 
uncertainties are added 
(next slide) 

https://arxiv.org/abs/1503.07589


Adding systematic uncertainties
● Nuisance parameters (systematic uncertainties) can be added to the likelihood

○ Recall the common model
● Maximum-likelihood ⇔ also the NPs get their best fit value and an uncertainty

○ Covariance matrix of all parameters (including NPs)
■ Can also get correlations of the parameters (“post-fit”)

○ Lot of physics in these values!

● The uncertainty (likelihood shifts by one half) includes stat+syst
○ How to get an impact of individual sources of the uncertainties?
○ Fix a given NP value to +- 1 sigma, repeat the minimisation and check impact on the 

parameter of interest
■ Repeat for all NPs

○ Stat-only uncertainty can be obtained by fixing all NPs to their fitted values and repeating 
the fit and getting the uncertainty on the POI
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Reading pull/ranking plots ATLAS-CONF-2020-058

● Is the central value postfit 
different than 0 (“pull”)?

● Is the post-fit uncertainty 
smaller than prefit 
(“constraints”)?
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Central value and uncertainty of a 
Nuisance parameter indicated with the 
black point and error bar

Impact of a given NP on the POI (ttH 
signal strength here). Full boxes ⇔ 
post-fit impact, empty boxes ⇔ pre-fit 
impact

In the model, most of the NPs have a 
Gaussian term in the likelihood ⇔ can 
talk about “sigmas”. Some parameters do not have a 

Gaussian term (e.g. normalisation of a 
given background) ⇔ centred around 1

NPs “ranked” by their 
impact on the POI

https://cds.cern.ch/record/2743685


Dangers of constraining systematic uncertainties
● Post-fit uncertainty smaller than prefit ⇔ constraint

○ Reduces total uncertainty - good!
○ Is it reliable?

■ Should the measurements have power to constrain a given uncertainty?
■ Is the measurements “better” than dedicated calibrations?
■ Are the variation granular enough?

● Usually: pass nominal and +- 1 sigma variations
○ Interpolation/extrapolation to get continuous impact
○ Might not have enough freedom to fit the real shape

■ Systematic might not be granular enough
■ Propagating impacts from high statistic regions?

45

2-point variations especially problematic!



Unfolding
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Slides from: Michele Pinamonti



What is unfolding about?
● Unfolding is:

○ removal of detector resolution effects from observed distribution, 
to extract (our best-guess of) underlying true distribution

○ i.e. extraction of a differential cross-section
● Can be done to extract:

○ total-phase-space or fiducial-phase-space cross-sections
○ cross-sections vs. variable defined at particle-level or at parton-level

● The unfolding problem can be essentially reduced to a response-matrix-inversion problem
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The regularization concept
● Most delicate point is the so-called regularization:

○ introduced to avoid amplification of statistical fluctuations in unfolded data 
(oscillations), happening when just inverting response matrix

● Regularization techniques always imply some level of assumptions ⇒ inevitable bias
○ Variance-bias optimisation
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“To regularize of not to regularize? 
This is the question...”



Tikhonov regularisation
● Recall the unfolding problem
● This can be reformulated as a minimisation problem (chi-square):

○ Can minimise to find the best fit for
○ Can impose some additional constraint (will bias the result!) 

● Common choice for the constraint: second discrete derivative (Tikhonov)

● Choice of τ ⇔ strength of the regularisation
● Different choices of             possible - e.g. SVD

○ See e.g. https://arxiv.org/abs/hep-ph/9509307 
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https://arxiv.org/abs/hep-ph/9509307


Impact of regularisation
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Taken from: 
https://arxiv.org/abs/1611.01927

https://arxiv.org/abs/1611.01927


Iterative Bayesian Unfolding (IBU)
● Frequently used in high-signal measurements
● Uses Bayes theorem iteratively:

○ prior based on theoretical prediction in first iteration
○ following iterations use result of previous ones as prior
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https://arxiv.org/pdf/1010.0632.pdf 

true 
distribution

data (“reco”) 
distribution response 

matrix

posterior likelihood prior

Systematics:
● not included in the 

formalism
● accessed via ensamble test

Regularization:
● achieved by stopping after a few iterations

(Niter → ∞ ⇒ unregularized unfolding, i.e. matrix inversion)
● finding optimal stopping point 

is an important feature of using IBU

https://arxiv.org/pdf/1010.0632.pdf


Thank you for your attention
Questions?
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“If your experiment needs a statistician, you need a better experiment.”
― Ernest Rutherford



Simple example
● Suppose we are doing a counting experiment

○ Predicted number of background events is b
○ Predicted number of signal events is s 
○ Observed number of events will follow Poisson distribution

● We observe n instances of x
● Likelihoods for the hypotheses

○ Background only
○ Signal + bkg
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Background only Signal + bkg

(Prior) probabilities for an event to be signal or bkg



Simple example continued
● Define test statistics (-2 logarithm of the likelihood ratio)

● Let us assume we observe Q = Qobs
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Is constant, can be ignored

● HEP standard
○ Claim discovery at 5 sigma
○ Reject B-only hypothesis 

when p- value is < 2.9 x 10-7


