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Overview
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Lecture 1 (yesterday):
• Hadrons, partons, and all that
• Colour charges
• QCD Lagrangian and Feynman rules
• QCD at test
• QCD-improved parton model

Lecture 2 (today):
• Fixed-order calculations and jets
• QCD radiation 
• Running coupling and confinement
• QCD in event generators



Recap: birdtracks I
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Colour factors can most easily be calculated using birdtrack diagrams
• Kronecker deltas are represented by colour lines  

(+ implicit summation over colour indices)

• generators and structure constants are represented by vertices

• there are  quark colours and  gluon colours

• generators are traceless

NC N2
C − 1

ji

a

= (Ta)i
j = i f abc

a

bc

= δaba b= δi
ji j

NC N2
C − 1

[Keppeler 1707.07280]

https://inspirehep.net/literature/1611314


Recap: birdtracks II
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Rewrite  identities as birdtracks

• Casimir invariants

Fundamental Casimir:        

Adjoint Casimir:

• Fierz identity:

SU(NC)

= CF



Recap: perturbative QCD

72

Idea: 
at high scales   series expansion in powers of the strong coupling 

 improve prediction by successively correcting leading-order approximation
(leading order, next-to-leading order, next-to-next-to-leading order, …)

Example:

Need: set of universal rules to calculate cross sections order by order

αs ≈ 0.1 ⇒ αs
dσ ∼ C0 + αsC1 + α2

s C2
⏟

small

+ α3
s C3

⏟
smaller

+ …
negligible?

→

1
7 = 1

10 (1 − 3
10 )

−1
≈ 1

10 (1 + 0.3 + 0.09 + 0.027 + …)

Exact: 0.142857143          Sum:      0.1    0.13     0.139     0.1417
                                          Error:     30%    9%       3%          1%

LO NLO NNLO N3LO



Recap: Feynman rules of QCD — vertices
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Three types of vertices in QCD

• quark-gluon vertex (  fermion-photon vertex in QED)

• pure gluon vertices (result of non-abelian structure of )

∼

SU(3)



Recap: Feynman rules of QCD — propagators
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Propagators  Green’s functions of inhomogeneous equations of motion

• gluon propagator (vector propagator)

• quark propagator (spinor propagator)

=̂

= δAB
−gαβ + (1 − λ) pα pβ

p2 + iε

p2 + iε
λ=1= δAB −gαβ

p2 + iε

= δa
b

i /p + m
p2 − m2 + iε



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)ε*μ (p4)

= ū(p3)(−igs)Taγμ i /p34
p2

34
(−ie)γνu(p2)εν(q)ε*μ (p4)

→ ū(p3)(−igs)Taγμ
i∑λ uλ(p34)ūλ(p34)

p2
34

(−ie)γνu(p2)εν(q)ε*μ (p4)

= gsTa 1
p2

34 ∑
λ

[ū(p3)/ε*(p4)uλ(p34)] ×

Recap: first-order corrections in DIS
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p3

p4

q

p2

In the collinear limit ,
the intermediate quark 
goes on-shell 

3 ∥ 4

p2
34 → 0

collinear
emissions factorise!



In the collinear limit, the squared amplitude becomes

,  

The effect of the gluon emission on the cross section is given by

We can now write the structure functions as

|ℳγ*q→qg |2 ∼ g2
s

1
p2

34
Pqg(z) |ℳγ*q→q |2 Pqg(z) = CF

1 + z2

1 − z

σγ*q→qg ∼ σγ*q→qg2
s

1
8π2

Q2

∫
μ2

ds34
s34

Pqg(z) = σγ*q→q
αs
2π

Pqg(z)log Q2

μ2

2F1(x, Q2) = ∑
i

Q2
i

1

∫
x

dy
y

fi(y)(δ(1 − x
y ) + αs

2π
Pqg( x

y )log Q2

μ2 )

Recap: scaling violations
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no scaling logarithmic scalingparton distribution function

reference scale
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• Hadrons, partons, and all that
• Colour charges
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• QCD at test
• QCD-improved parton model

Lecture 2 (today):
• Fixed-order calculations and jets
• QCD radiation 
• Running coupling and confinement
• QCD in event generators
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Real corrections
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Consider real correction to e+e− → γ*/Z → qq

=



= ū(pk)

Real corrections
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Consider real correction to e+e− → γ*/Z → qq
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82

Consider real correction to e+e− → γ*/Z → qq
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Consider real correction to e+e− → γ*/Z → qq
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Consider real correction to e+e− → γ*/Z → qq



= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

(pi + pj)2 (−igs)Taγμv(pi)ε*μ (pj)

Real corrections
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Consider real correction to e+e− → γ*/Z → qq

massless partons , p2
i = 0 p2

j = 0

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)



Consider real correction to 

In the soft limit , 
the leading term is

e+e− → γ*/Z → qq

pj → 0 → ū(pk)(−ie)/εμ(q) iγν pi ν

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

(pi + pj)2 (−igs)Taγμv(pi)ε*μ (pj)

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)

Real corrections
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Consider real correction to 

In the soft limit , 
the leading term is

e+e− → γ*/Z → qq

pj → 0

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

(pi + pj)2 (−igs)Taγμv(pi)ε*μ (pj)

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)

→ ū(pk)(−ie)/εμ(q) iγν pi ν

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)

Real corrections
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= ū(pk)(−ie)/εμ(q)
ipiε*(pj)

pi pj
(−igs)Tav(pi)

γνγμ + γμγν = 2gμν

γμpi μv(pi) = 0



Consider real correction to 

In the soft limit , 
the leading term is

e+e− → γ*/Z → qq

pj → 0

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

(pi + pj)2 (−igs)Taγμv(pi)ε*μ (pj)

= ū(pk)(−ie)/εμ(q)
i(/pi + /pj)

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)

→ ū(pk)(−ie)/εμ(q) iγν pi ν

2pi pj
(−igs)Taγμv(pi)ε*μ (pj)

= ū(pk)(−ie)/εμ(q)
ipiε*(pj)

pi pj
(−igs)Tav(pi)

Real corrections
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= gsTa
piε*(pj)

pi pj
ū(pk)(−ie)/εμ(q)v(pi)soft gluon

emissions factorise!



In the soft limit , the leading term in the amplitude  is

and similarly

pj → 0 γ* → qq̄g

= gsTa
piε*(pj)

pi pj
×

Soft limit I
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= gsTa
pkε*(pj)

pj pk
×



Soft limit II
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In the soft limit , the leading term in the squared amplitude  is

Sum over polarisations  and colours 

pj → 0 γ* → qq̄g

∑ εμ(pj)ε*ν (pj) = − gμν TaTb = CFNC

universal factor:
soft eikonal

= CFg2
s

2pi pk

(pi pj)(pj pk)
×

2*

2 ×

= g2
s TaTb

pkε*(pj)
pj pk

piε(pj)
pi pj

×

2*



Soft eikonal
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Squared matrix elements factorise in the soft limit

In a specific reference frame, use  to write eikonal as:

  

This diverges in the
• soft limit 
• collinear limits  or 

|ℳn+1 |2 ∝ 2pi pk

(pi pj)(pj pk)
|ℳn |2

pi pj = EiEj(1 − cos θij)
2pi pk

(pi pj)(pj pk)
= 1

E2
j (1 − cos θij)(1 − cos θjk)

Ej → 0
θij → 0 θjk → 0

[Giele, Kosower, Skands PRD 84 (2011) 054003]
2pi pj

2pj pk

Divergences and factorisation in the
soft and collinear limits are universal
features of QCD amplitudes!

The same is true for
the phase space

dΦn+1 = dΦ+1dΦn

https://inspirehep.net/literature/889142


Infrared-finite cross sections
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Problem: 
how can we calculate physical results if QCD amplitudes are infrared divergent?

Solution:
by taking the full  correction into account!

So far, we considered the real correction…

𝒪(αs)

*

∝ gs ∝ gs

→ 𝒪(αs)



Infrared-finite cross sections
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Problem: 
how can we calculate physical results if QCD amplitudes are infrared divergent?

Solution:
by taking the full  correction into account!

So far, we considered the real correction… but the virtual correction contributes too!

The inclusive cross section  is infrared finite!

𝒪(αs)

σNLO = σR + σV

*

∝ gs ∝ gs

→ 𝒪(αs)

*

∝ g2
s ∝ g0

s
→ 𝒪(αs)

[Kinoshita JMP 3 (1962) 650] [Lee, Nauenberg PR 133 (1964) B1549][Bloch, Nordsieck PR 52 (1937) 54]

https://inspirehep.net/literature/2272
https://inspirehep.net/literature/23504
https://inspirehep.net/literature/23337


Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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=



Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections

96

= ū(pk)



Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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= ū(pk)(−igs)Taγμ



Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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= ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2



Consider virtual correction to e+e− → γ*/Z → qq
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= ū(pk)(−igs)Taγμ i(/pk − /k)
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Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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= ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2 (−ie)/εμ(q)

× i(/pi + /k)
(pi + k)2



Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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= ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2 (−ie)/εμ(q)

× i(/pi + /k)
(pi + k)2 (−igs)Taγν



Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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= ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2 (−ie)/εμ(q)

× i(/pi + /k)
(pi + k)2 (−igs)Taγνv(pi)



Consider virtual correction to e+e− → γ*/Z → qq

Virtual corrections
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= ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2 (−ie)/εμ(q)

× i(/pi + /k)
(pi + k)2 (−igs)Taγνv(pi)

−igμν

k2



Consider virtual correction to 

We have to integrate over the free loop momentum in 
 dimensions:

e+e− → γ*/Z → qq

D = 4 − 2ε

Virtual corrections

104

= ∫ dkD

(2π)D ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2 (−ie)/εμ(q)

× i(/pi + /k)
(pi + k)2 (−igs)Taγνv(pi)

−igμν

k2



Consider virtual correction to 

We have to integrate over the free loop momentum in 
 dimensions:

The integration is cumbersome but straightforward and yields an integral of type
(although beyond the scope of these lectures…)

The limit  is not well-defined!

e+e− → γ*/Z → qq

D = 4 − 2ε

μ4−D ∫ dkD

(2π)D
1

k2(pi + k)2(pk − k)2 ∼ eεγE

Γ(1 − ε) ( μ2

2pi pk )
ε

(− 1
ε2 + 𝒪 (ε−1))

ε → 0

Virtual corrections
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= ∫ dkD

(2π)D ū(pk)(−igs)Taγμ i(/pk − /k)
(pk − k)2 (−ie)/εμ(q)

× i(/pi + /k)
(pi + k)2 (−igs)Taγνv(pi)

−igμν

k2

 is the Euler-Mascheroni constantγE = 0.55721...



The virtual correction yields an integral of type

The integral of the eikonal over the phase space of the emission yields:

The sum of all virtual and all integrated real corrections cancels all poles in 
 the limit  is well-defined!

The cancellation of poles is simple for inclusive cross sections , 
but what if we want to calculate a differential cross section  for some 
observable ?

μ4−D ∫ dkD

(2π)D
1

k2(pi + k)2(pk − k)2 ∼ eεγE

Γ(1 − ε) ( μ2

2pi pk )
ε

(− 1
ε2 + 𝒪 (ε−1))

μ4−D ∫
dpD

j

(2π)D
pi pk

(pi pj)(pj pk)
∼ eεγE

Γ(1 − ε) ( μ2

2pi pj )
ε

( 1
ε2 + 𝒪 (ε−1))

ε
⇒ ε → 0

σNLO = σR + σV

dσNLO/dO
O

Infrared-finite cross sections II
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Anatomy of a NLO calculation

107

Problem: 
Higher-order corrections not separately finite, 
but total cross section should be!
• explicit poles in virtual corrections 
• implicit poles (singularities) in real corrections

Idea:
Introduce universal and simple counter term that subtracts singular behaviour:

with  

dσNLO = dσV+dσT+ ∫
+1

[dσR−dσS]

dσT − ∫
+1

dσS = 0



NLO subtraction I
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Toy model: 
NLO correction to “two-jet” observable 

and assume the following IR behaviour of the matrix element and observable:

 ,  

The single-unresolved limit  can be subtracted from  by

so that

O2(x1, x2)
dσNLO

dx1dx2 D=4−2ε

= [ M0
2(x1, x2)

ε
+ M1,finite

2 (x1, x2)] O2(x1, x2)

dσV

+
1

∫
0

M0
3(x1, x2, x3) O3(x1, x2, x3)

dσR

x−ε
3 dx3

lim
x3→0

M0
3(x1, x2, x3) = 1

x3
M0

2(x1, x2) lim
x3→0

O3(x1, x2, x3) = O2(x1, x2)

x3 → 0 dσR

dσS(x1, x2, x3) = 1
x3

M0
2(x1, x2) O2(x1, x2)

lim
x3→0

[dσR(x1, x2, x3) − dσS(x1, x2, x3)] = 0



NLO subtraction II
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The real subtraction term can easily be integrated in  dimensions

  

so that

Then  and  are separately infrared finite and

can be evaluated with 

D
1

∫
0

dσS(x1, x2, x3) x−ε
3 dx3 =

1

∫
0

1
x3

M0
2(x1, x2) O2(x1, x2) x−ε

3 dx3 = − M0
2(x1, x2)

ε
O2(x1, x2)

lim
ε→0

[dσV(x1, x2) + dσT(x1, x2)] = M1,finite
2 (x1, x2) O(x1, x2)

dσV + dσT dσR − dσS

dσNLO

dx1dx2
= M1,finite

2 O2(x1, x2) +
1

∫
0

[M0
3(x1, x2, x3) O3(x1, x2, x3) − 1

x3
M0

2(x1, x2) O2(x1, x2)] dx3

ε = 0



Infrared safety
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The toy subtraction formalism relied on the fact that

This is a manifestation of infrared and collinear safety (IRC safety).

In perturbative QCD, observables are only calculable if they are insensitive to 
arbitrarily soft and collinear radiation. 
Otherwise, the cancellation of real and virtual singularities is spoiled.

Example of IRC-unsafe observables: particle multiplicities (“how many quarks?”)

lim
xi→0

On+1(x1, …, xi, …, xn+1) = On(x1, …, xn)



IRC-safe observables — jets
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IRC-safe observables are often defined in terms of jets.

Instead of looking at individual partons, look at collimated
sprays of partons.

• initial partons radiate further partons (“Bremsstrahlung”)
• hard radiation generates new jets
• soft/collinear radiation generates jet substructure

Jet counting not always obvious!



Jet algorithms
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Sequential jet algorithms help to quantify what we mean by a jet

Algorithmic procedure:
1. compute distance measure  for all pairs of final-state particles  and 

beam distance  for all final-state particles 
2. find minimum of all  and 
A. if one of the  is the smallest, combine  into a pseudo-particle
B. if one of the  is the smallest,  as a jet and removed from the algorithm

3. start over from step 1 until all objects are clustered

Distance measures are subject to choice, e.g. generalised -algorithm:

 ,   ,   

 jets defined by “cone size”  (input parameter)

 different choices of  yield different geometric properties of the jets

dij i, j
diB i

dij diB
dij i, j
diB i

kT

dij = min(p2p
Ti , p2p

Tj )
ΔR2

ij

R2 diB = p2p
Ti ΔR2

ij = (yi − yj)2 + (ϕi − ϕj)2

→ R
→ p



Jet algorithms — illustration

113[Salam EPJC 67 (2010) 637]

 ,   ,   dij = min(p2p
Ti , p2p

Tj )
ΔR2

ij

R2 diB = p2p
Ti ΔR2

ij = (yi − yj)2 + (ϕi − ϕj)2

p = 1 p = 0

p = − 1

https://inspirehep.net/literature/822643
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QCD radiation
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So far, jets consist of a handful of partons only (1 at LO, 2 at NLO, …).

But additional radiation driven by divergent propagators!



QCD radiation

116

So far, jets consist of a handful of partons only (1 at LO, 2 at NLO, …).

But additional radiation driven by divergent propagators!



QCD radiation

117

So far, jets consist of a handful of partons only (1 at LO, 2 at NLO, …).

But additional radiation driven by divergent propagators!



QCD radiation
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So far, jets consist of a handful of partons only (1 at LO, 2 at NLO, …).

But additional radiation driven by divergent propagators!



Modelling QCD radiation I
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Parton branching can occur in two ways:

Assume that parton evolution conserves probability (unitarity).

The probability for  emissions is given by Poisson statistics

with “decay probability” . 

n

P(n, λ) = λne−λ

n!
λ

observed

unobserved

slide adapted from S. Höche

In parton showers this 
is called Sudakov factor 



Modelling QCD radiation II
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Express decay probability in terms of splitting functions in the collinear limit:

By construction, the parton shower is unitary:

Algorithmically: starting from  solve  
for next branching scale  until hadronisation
scale  is reached.

λ → λ(Q2, t) =
Q2

∫
t

dt′ 

t′ ∫ dz
αs
2π

P(z)

dσ = Δ(t0, th) dσ +
t0

∫
th

dt
t ∫ dz Δ(t0, t) P(z) dσ

t0 Δ(t0, t)
t

th

t

z

1 − z

no branching between  and t0 th branching at scale t

Δ(t0, t) = e−λ(t0,t)

t0

t1
t2

t3

…



Modelling QCD radiation III
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Starting from a hard scale , a parton shower models additional radiation under the 
assumption that it is soft and/or collinear and ordered
( )

Additional loops and legs are only
modelled approximately.

t0

t0 > t1 > t2 > … > th
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The running coupling
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The strength of QCD interactions is governed by , but each interaction receives 
infinitely many unobservable corrections, e.g. in :

The corresponding loop integrals require ultraviolet renormalisation: 
• UV divergences are cancelled at unphysical scale 
• Universal higher-order terms are absorbed into the definition of 

As a result,  becomes scale dependent with logarithmic scale dependency:

,   

Note: the dependence on  vanishes at all orders in perturbation theory.

αs
qq → qq

μ
αs

αs
dαs(μ2)
d log μ2 = β(αs) β(αs) = − α2

s (β0 + β1αs + β2α2
s + …)

μ



The running coupling — leading-order result
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At first order in perturbation theory

       

so that 

Alternatively in terms of fundamental
scale at which  diverges:

 

dαs(μ2)
d log μ2 = − β0α2

s (μ2)

αs(μ2) = αs(μ2
0)

1 + αs(μ2
0)β0 log μ2

μ2
0

αs

αs(μ2) = 1
β0 log μ2

Λ2
QCD

β0 = 11CA − 2Nf
12π

[PDG]

https://pdg.lbl.gov/2021/reviews/rpp2021-rev-qcd.pdf


Asymptotic freedom and confinement
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At -boson mass 

Asymptotic freedom: 
Nobel Prize 2004: Gross, Polizer, Wilczek
At high energy scales , 
quarks and gluons are quasi-free

Confinement:
At   (Landau pole), 
quarks and gluons bound in hadrons

• perturbation theory valid if 

• typical jet transverse momenta: 

Z αs(mZ) ≈ 0.118

αs → 0

ΛQCD αs → ∞

μ ≫ ΛQCD

pT ∼ 50 GeV − 5 TeV

[PDG]

confinem
ent

asymptotic freedom

https://pdg.lbl.gov/2021/reviews/rpp2021-rev-qcd.pdf
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How hard can it be?
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Approximate all contributing amplitudes for this…
…to all orders …including non-perturbative effects 
…then integrate it over a ~300 dimensional phase space 

slide adapted from P. Skands



How hard can it be?
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Approximate all contributing amplitudes for this…
…to all orders …including non-perturbative effects 
…then integrate it over a ~300 dimensional phase space 

Divide et impera!



Step 1: fixed-order perturbation theory

d�̂0

A priori, confinement prohibits a perturbative calculation.

At high scales, quarks and gluons behave almost free
⇒ factorise short-distance (perturbative) from long-
distance (non-perturbative) physics.

<latexit sha1_base64="AeQvpkyvSkmRwkl1ZHWRl/KzjEw="></latexit>

d�pp!X =
X

a,b

1Z

0

dx1

1Z

0

dx2 fa(xa,↵s(µR), µF)fb(xb,↵s(µR), µF) d�̂0(x1, x2,↵s(µR), µR, µF) +O ((⇤/Q)p)

Parton distribution functions (PDFs)
non-perturbative hard scattering

perturbative

power corrections
non-perturbative

[PDG]

confinem
ent

asymptotic freedom

probability to find gluon in proton A probability to find gluon in proton B

Step 1: fixed-order perturbation theory
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Step 2: all-orders

d�̂0

Scattered partons carry QCD and/or electric charges.
This induces radiative corrections via QCD/electromagnetic bremsstrahlung.

Parton showers dress a fixed-order calculation with additional radiation, describing the 
evolution from the parton level (quarks, gluons, …) at large scales to the particle level
(hadrons) at small scales.

Step 2: all orders
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Step 3: combine fixed-order and shower

d�̂0

Fixed-order calculations → hard jets
• reliable at high scales, without large scale 

hierarchies
• accurate predictions for limited number of 

legs (+ loops)
• determines perturbative accuracy 

(LO, NLO, NNLO, …)

Parton showers → jet substructure
• reliable in unresolved regions, with large 

scale hierarchies
• approximate predictions for many 

particles
• determines logarithmic accuracy 

(LL, NLL, NNLL, …)

Large complementarity between fixed-order calculations and parton showers, so 
ideally combine them! 

Step 3: combine fixed-order and all orders

131



Matching and merging

132

Some disambiguation…

Matching
combine a fixed-order (typically NLO) 
calculation with a parton shower, 
avoiding double-counting of 
emissions

Merging
combine multiple (N)LO event 
samples into a single one, accounting 
for shower radiation and avoiding 
double-counting



Step 4: multiple interactions

MPIMPI

d�̂0

What happens after one parton has been extracted from each proton?

Remnants can undergo multiple scatters → multi-parton interactions (MPI)

How exactly the underlying event is modelled depends…

Step 4: multiple interactions
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Interleaved multi-parton interactions
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[PDG]

confinem
ent

asymptotic freedom

Step 5: confinement

MPIMPI

d�̂0

At energies ~ 1 GeV, the 
parton shower is 
terminated, partons
become confined

Step 5: confinement
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[PDG]

confinem
ent

asymptotic freedom

Step 5: confinement (and fragmentation)

MPIMPI

d�̂0

·
·

·
·

··

In event generators,
this is modelled by 
hadronisation

At energies ~ 1 GeV, the 
parton shower is 
terminated, partons
become confined
inside hadrons

Step 5: confinement (and fragmentation)
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A tale of two cities
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(Lund) string model cluster model

Based on linear strong potential
at large distances.

Based on preconfinement and 
local parton-hadron duality.

Both are 
heuristic
models!
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