

Introduction to QCD Lecture 2

HASCO Summer School 2024

Christian T Preuss (University of Wuppertal)

BERGISCHE UNIVERSITÄT WUPPERTAL

Lecture 1 (yesterday):

- Hadrons, partons, and all that
- Colour charges
- QCD Lagrangian and Feynman rules
- QCD at test
- QCD-improved parton model

Lecture 2 (today):

- Fixed-order calculations and jets
- QCD radiation
- Running coupling and confinement
- QCD in event generators

Recap: birdtracks I

Colour factors can most easily be calculated using birdtrack diagrams

• Kronecker deltas are represented by colour lines (+ implicit summation over colour indices)

$$
i \longrightarrow \qquad j = \delta^i_j \qquad a \quad \text{allull} \quad b = \delta^{ab}
$$

• generators and structure constants are represented by vertices

Rewrite $\mathrm{SU}(N_\mathrm{C})$ identities as birdtracks

• **Casimir invariants**

• **Fierz identity**:

Idea:

at high scales $\alpha_{\mathrm{s}} \approx 0.1 \Rightarrow$ series expansion in powers of the strong coupling α_{s}

$$
d\sigma \sim C_0 + \alpha_s C_1 + \underbrace{\alpha_s^2 C_2}_{\text{S}} + \underbrace{\alpha_s^3 C_3}_{\text{resileible}}
$$

small smaller

negligible?

 \rightarrow improve prediction by successively correcting leading-order approximation (leading order, next-to-leading order, next-to-next-to-leading order, …)

Example:

Need: set of universal rules to calculate cross sections order by order

Recap: Feynman rules of QCD — vertices

Three types of vertices in QCD

• quark-gluon vertex (\sim fermion-photon vertex in QED)

• pure gluon vertices (result of non-abelian structure of $\mathrm{SU}(3)$)

Propagators $\hat{=}$ Green's functions of inhomogeneous equations of motion

• gluon propagator (vector propagator)
\n
$$
A, \alpha \quad p \quad B, \beta \quad = \delta^{AB} \frac{-g^{\alpha \beta} + (1 - \lambda) \frac{p^{\alpha} p^{\beta}}{p^2 + i \varepsilon}}{p^2 + i \varepsilon} \stackrel{\lambda = 1}{=} \delta^{AB} \frac{-g^{\alpha \beta}}{p^2 + i \varepsilon}
$$

• quark propagator (spinor propagator)

$$
\stackrel{\mathbf{a},\mathbf{i}}{\longrightarrow} \stackrel{\mathbf{p}}{\longrightarrow} \stackrel{\mathbf{b},\mathbf{j}}{\longrightarrow} = \delta_b^a \frac{\mathbf{i}p + m}{p^2 - m^2 + \mathbf{i}\varepsilon}
$$

Recap: first-order corrections in DIS

Consider the *s*-channel contribution to *γ**q → qg

$$
q \sum_{p_2}
$$
\n
$$
\sum_{p_2}
$$
\n
$$
= \bar{u}(p_3)(-ig_s)T^a\gamma^{\mu} \frac{i(\vec{p}_3 + \vec{p}_4)}{(p_3 + p_4)^2}(-ie)\gamma^{\nu}u(p_2)\varepsilon_{\nu}(q)\varepsilon_{\mu}^*(p_4)
$$
\nIn the collinear limit 3 || 4, $= \bar{u}(p_3)(-ig_s)T^a\gamma^{\mu} \frac{i\vec{p}_{34}}{p_{34}^2}(-ie)\gamma^{\nu}u(p_2)\varepsilon_{\nu}(q)\varepsilon_{\mu}^*(p_4)$ \nthese intermediate quark
\ngoes on-shell $p_{34}^2 \to 0$
\n $\rightarrow \bar{u}(p_3)(-ig_s)T^a\gamma^{\mu} \frac{i\sum_{\lambda} u_{\lambda}(p_{34})\bar{u}_{\lambda}(p_{34})}{p_{34}^2}(-ie)\gamma^{\nu}u(p_2)\varepsilon_{\nu}(q)\varepsilon_{\mu}^*(p_4)$ \n
$$
\frac{\text{collinear}}{\text{emissions factorise!}} = g_sT^a \frac{1}{p_{34}^2} \sum_{\lambda} [\bar{u}(p_3)\varepsilon^*(p_4)u_{\lambda}(p_{34})] \times \sum_{\lambda} \sum_{\lambda} [\bar{u}(p_3)\varepsilon^*(p_4)u_{\lambda}(p_{34})] \times \sum_{\lambda} [\bar{u}(p_3)\varepsilon^*(p_4)u_{\lambda}(p_{34})]
$$

In the collinear limit, the squared amplitude becomes

$$
|\mathcal{M}_{\gamma^*q \to qg}|^2 \sim g_s^2 \frac{1}{p_{34}^2} P_{qg}(z) |\mathcal{M}_{\gamma^*q \to q}|^2, P_{qg}(z) = C_{\rm F} \frac{1+z^2}{1-z}
$$

The effect of the gluon emission on the cross section is given by

$$
\sigma_{\gamma^*q \to qg} \sim \sigma_{\gamma^*q \to q} g_s^2 \frac{1}{8\pi^2} \int_{\mu^2}^{Q^2} \frac{ds_{34}}{s_{34}} P_{qg}(z) = \sigma_{\gamma^*q \to q} \frac{\alpha_s}{2\pi} P_{qg}(z) \log \frac{Q^2}{\mu^2}
$$
 reference scale

We can now write the structure functions as

$$
2F_1(x, Q^2) = \sum_i Q_i^2 \int_y^1 \frac{dy}{y} f_i(y) \left(\delta \left(1 - \frac{x}{y} \right) + \frac{\alpha_s}{2\pi} P_{qg} \left(\frac{x}{y} \right) \log \frac{Q^2}{\mu^2} \right)
$$

parton distribution function

Lecture 1 (yesterday):

- Hadrons, partons, and all that
- Colour charges
- QCD Lagrangian and Feynman rules
- QCD at test
- QCD-improved parton model

Lecture 2 (today):

- Fixed-order calculations and jets
- QCD radiation
- Running coupling and confinement
- QCD in event generators

Lecture 1 (yesterday):

- Hadrons, partons, and all that
- Colour charges
- QCD Lagrangian and Feynman rules
- QCD at test
- QCD-improved parton model

Lecture 2 (today):

- Fixed-order calculations and jets
- QCD radiation
- Running coupling and confinement
- QCD in event generators

Consider real correction to $e^+e^- \to \gamma^*/Z \to q\overline{q}$

Consider real correction to $\mathrm{e^{+}e^{-} \rightarrow \gamma^{*}/Z \rightarrow q\overline{q}}$

$$
= \bar{u}(p_k)(-ie)\mathcal{E}_{\mu}(q)\frac{i(\mathbf{p}_i + \mathbf{p}_j)}{(p_i + p_j)^2}(-ig_s)T^a\gamma^{\mu}v(p_i)\mathcal{E}_{\mu}^*(p_j)
$$

$$
= \bar{u}(p_k)(-ie)\mathcal{E}_{\mu}(q)\frac{i(\mathbf{p}_i + \mathbf{p}_j)}{2p_ip_j}(-ig_s)T^a\gamma^{\mu}v(p_i)\mathcal{E}_{\mu}^*(p_j)
$$

$$
\rightarrow \bar{u}(p_k)(-ie)\mathcal{E}_{\mu}(q)\frac{i\gamma^{\nu}p_{i\nu}}{2p_ip_j}(-ig_s)T^a\gamma^{\mu}v(p_i)\mathcal{E}_{\mu}^*(p_j)
$$

In the soft limit $p_j \to 0$, the leading term is

Consider real correction to $\mathrm{e^{+}e^{-} \rightarrow \gamma^{*}/Z \rightarrow q\overline{q}}$

In the soft limit $p_j \to 0$, the leading term is

 $=\bar{u}(p_k)(-ie)\ell_\mu(q)$ $i(\phi_i + \phi_j)$ $\frac{F_{i} + F_{j}}{(p_{i} + p_{j})^{2}}(-ig_{s})T^{a}\gamma^{\mu}v(p_{i})\varepsilon_{\mu}^{*}(p_{j})$ $=\bar{u}(p_k)(-ie)\dot{\epsilon}_{\mu}(q)$ $i(\phi_i + \phi_j)$ 2*pipj* $(-ig_s)T^a\gamma^\mu v(p_i)\varepsilon_\mu^*(p_j)$ $\rightarrow \bar{u}(p_k)(-ie)\dot{\epsilon}_{\mu}(q)$ *iγ^{<i>ν*}*p*_{*iν*} 2*pipj* $(-ig_s)T^a\gamma^\mu v(p_i)\varepsilon_\mu^*(p_j)$ $=\bar{u}(p_k)(-ie)\ell_\mu(q)$ i*pi ε**(*pj*) *pipj* $(-ig_s)T^a v(p_i)$ $= g_s T^a \frac{p_i \varepsilon^*(p_j)}{p_j}$ $\left\{\nabla_{\mathbf{g}}\mathbf{g}_{\mathbf{g}}\nabla_{\mathbf{g}}\left[\nabla_{\mathbf{g}}\mathbf{g}_{\mathbf{g}}\right]\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\left[\nabla_{\mathbf{g}}\mathbf{g}_{\mathbf{g}}\right]\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf{g}}\nabla_{\mathbf$

pipj

emissions factorise!

Soft limit I

In the soft limit $p_j \to 0$, the leading term in the amplitude $\gamma^* \to \mathrm{q\bar{q}g}$ is

and similarly

Soft limit II

In the soft limit $p_j \to 0$, the leading term in the squared amplitude $\gamma^* \to \mathrm{q\bar{q}g}$ is

 $\sum \varepsilon_{\mu}(p_{j})\varepsilon_{\nu}^{*}(p_{j}) = -\,g_{\mu\nu}$ and colours $T^{a}T^{b} = C_{\textrm{F}}N_{\textrm{C}}$

Soft eikonal

Squared matrix elements factorise in the soft limit

$$
|\mathcal{M}_{n+1}|^2 \propto \frac{2p_i p_k}{(p_i p_j)(p_j p_k)} |\mathcal{M}_n|^2
$$

The same is true for the phase space $d\Phi_{n+1} = d\Phi_{+1} d\Phi_n$

In a specific reference frame, use $p_i p_j = E_i E_j (1-\cos\theta_{ij})$ to write eikonal as:

$$
\frac{2p_i p_k}{(p_i p_j)(p_j p_k)} = \frac{1}{E_j^2 (1 - \cos \theta_{ij})(1 - \cos \theta_{jk})}
$$

Problem:

how can we calculate physical results if QCD amplitudes are infrared divergent?

Solution:

by taking the full $\mathscr{O}(\alpha_{\mathrm{s}})$ correction into account!

So far, we considered the real correction…

Problem:

how can we calculate physical results if QCD amplitudes are infrared divergent?

Solution:

by taking the full $\mathscr{O}(\alpha_{\mathrm{s}})$ correction into account!

So far, we considered the real correction… but the virtual correction contributes too!

The inclusive cross section $\sigma^{\mathrm{NLO}} = \sigma^{\mathrm{R}} + \sigma^{\mathrm{V}}$ is infrared finite! [\[Bloch, Nordsieck PR 52 \(1937\) 54\]](https://inspirehep.net/literature/23337) [\[Kinoshita JMP 3 \(1962\) 650\]](https://inspirehep.net/literature/2272) [\[Lee, Nauenberg PR 133 \(1964\) B1549\]](https://inspirehep.net/literature/23504)

Consider virtual correction to $\mathrm{e}^+\mathrm{e}^- \to \gamma^*/Z \to \mathrm{q}\mathrm{\overline{q}}$

We have to integrate over the free loop momentum in $D=4-2\varepsilon$ dimensions:

$$
= \int \frac{dk^D}{(2\pi)^D} \bar{u}(p_k)(-ig_s) T^a \gamma^{\mu} \frac{i\psi_k - k}{(p_k - k)^2} (-ie) \dot{\varepsilon}_{\mu}(q)
$$

$$
\times \frac{i\psi_i + k}{(p_i + k)^2} (-ig_s) T^a \gamma^{\nu} v(p_i) \frac{-ig_{\mu\nu}}{k^2}
$$

Consider virtual correction to $\mathrm{e}^+\mathrm{e}^- \to \gamma^*/Z \to \mathrm{q}\mathrm{\overline{q}}$

The integration is cumbersome but straightforward and yields an integral of type (although beyond the scope of these lectures…)

$$
\mu^{4-D} \int \frac{dk^D}{(2\pi)^D} \frac{1}{k^2 (p_i + k)^2 (p_k - k)^2} \approx \frac{e^{\epsilon \gamma_E}}{\Gamma(1 - \epsilon)} \left(\frac{\mu^2}{2p_i p_k}\right)^{\epsilon} \left(-\frac{1}{\epsilon^2} + \mathcal{O}\left(\epsilon^{-1}\right)\right)
$$

The limit $\epsilon \to 0$ is not well-defined!

The virtual correction yields an integral of type

$$
\mu^{4-D} \int \frac{\mathrm{d}k^D}{(2\pi)^D} \frac{1}{k^2 (p_i + k)^2 (p_k - k)^2} \sim \frac{\mathrm{e}^{\varepsilon \gamma_{\rm E}}}{\Gamma(1 - \varepsilon)} \left(\frac{\mu^2}{2p_i p_k} \right)^{\varepsilon} \left(-\frac{1}{\varepsilon^2} + \mathcal{O}\left(\varepsilon^{-1}\right) \right)
$$

The integral of the eikonal over the phase space of the emission yields:

$$
\mu^{4-D} \int \frac{\mathrm{d}p_j^D}{(2\pi)^D} \frac{p_i p_k}{(p_i p_j)(p_j p_k)} \sim \frac{\mathrm{e}^{\varepsilon \gamma_{\rm E}}}{\Gamma(1-\varepsilon)} \left(\frac{\mu^2}{2p_i p_j}\right)^{\varepsilon} \left(\frac{1}{\varepsilon^2} + \mathcal{O}\left(\varepsilon^{-1}\right)\right)
$$

The sum of all virtual and all integrated real corrections cancels all poles in *ε* \Rightarrow the limit $\varepsilon \to 0$ is well-defined!

The cancellation of poles is simple for inclusive cross sections $\sigma^{\rm NLO}=\sigma^{\rm R}+\sigma^{\rm V},$ but what if we want to calculate a differential cross section ${\rm d}\sigma^{\rm NLO}/{\rm d}O$ for some observable O ?

Introduce universal and simple counter term that subtracts singular behaviour:

$$
d\sigma^{NLO} = d\sigma^{V} + d\sigma^{T} + \int_{+1}^{+} [d\sigma^{R} - d\sigma^{S}]
$$

$$
d\sigma^{S} = 0
$$

with $\mathrm{d}\sigma^{\mathrm{T}}-\;\;\Big|\;$ $+1$ $d\sigma^S=0$

Toy model:

NLO correction to "two-jet" observable $O_2(x_1, x_2)$

$$
\frac{d\sigma^{NLO}}{dx_1dx_2}\Bigg|_{D=4-2\varepsilon} = \underbrace{\left[\frac{M_2^0(x_1, x_2)}{\varepsilon} + M_2^{1, \text{finite}}(x_1, x_2)\right]}_{d\sigma^V} O_2(x_1, x_2) + \underbrace{\int_0^1 \underbrace{M_3^0(x_1, x_2, x_3)}_{d\sigma^R} O_3(x_1, x_2, x_3)}_{d\sigma^R} x_3^{-\varepsilon} dx_3
$$

and assume the following IR behaviour of the matrix element and observable:

$$
\lim_{x_3 \to 0} M_3^0(x_1, x_2, x_3) = \frac{1}{x_3} M_2^0(x_1, x_2), \quad \lim_{x_3 \to 0} O_3(x_1, x_2, x_3) = O_2(x_1, x_2)
$$

The single-unresolved limit $x_3\to 0$ can be subtracted from $\mathrm{d}\sigma^{\mathrm{R}}$ by

$$
d\sigma^{S}(x_1, x_2, x_3) = \frac{1}{x_3} M_2^{0}(x_1, x_2) O_2(x_1, x_2)
$$

so that

$$
\lim_{x_3 \to 0} \left[d\sigma^R(x_1, x_2, x_3) - d\sigma^S(x_1, x_2, x_3) \right] = 0
$$

NLO subtraction II

The real subtraction term can easily be integrated in D dimensions

$$
\int_{0}^{1} d\sigma^{S}(x_{1}, x_{2}, x_{3}) x_{3}^{-\epsilon} dx_{3} = \int_{0}^{1} \frac{1}{x_{3}} M_{2}^{0}(x_{1}, x_{2}) O_{2}(x_{1}, x_{2}) x_{3}^{-\epsilon} dx_{3} = -\frac{M_{2}^{0}(x_{1}, x_{2})}{\epsilon} O_{2}(x_{1}, x_{2})
$$

so that

$$
\lim_{\varepsilon \to 0} \left[d\sigma^V(x_1, x_2) + d\sigma^T(x_1, x_2) \right] = M_2^{1, \text{finite}}(x_1, x_2) O(x_1, x_2)
$$

Then ${\rm d}\sigma^{\rm V}+{\rm d}\sigma^{\rm T}$ and ${\rm d}\sigma^{\rm R}-{\rm d}\sigma^{\rm S}$ are separately infrared finite and d*σ*NLO dx_1dx_2 $= M_2^{1, \text{finite}} O_2(x_1, x_2) +$ 1 ∫ 0 \vert $M_3^0(x_1, x_2, x_3) O_3(x_1, x_2, x_3) - \frac{1}{x_3}$ *x*3 $M_2^0(x_1, x_2) O_2(x_1, x_2) \begin{vmatrix} dx_3 \end{vmatrix}$

can be evaluated with $\varepsilon=0$

The toy subtraction formalism relied on the fact that

$$
\lim_{x_i \to 0} O_{n+1}(x_1, \dots, x_i, \dots, x_{n+1}) = O_n(x_1, \dots, x_n)
$$

This is a manifestation of **infrared and collinear safety** (IRC safety).

In perturbative QCD, observables are only calculable if they are insensitive to arbitrarily soft and collinear radiation.

Otherwise, the cancellation of real and virtual singularities is spoiled.

Example of IRC-unsafe observables: particle multiplicities ("how many quarks?")

IRC-safe observables are often defined in terms of **jets**.

Instead of looking at individual partons, look at collimated sprays of partons.

- initial partons radiate further partons ("Bremsstrahlung")
- hard radiation generates new jets
- soft/collinear radiation generates jet substructure

Jet counting not always obvious!

Sequential jet algorithms help to quantify what we mean by a jet

Algorithmic procedure:

- 1. compute distance measure d_{ij} for all pairs of final-state particles i, j and beam distance d_{iB} for all final-state particles i
- 2. find minimum of all d_{ij} and d_{iB}
	- A. if one of the d_{ij} is the smallest, combine i,j into a pseudo-particle

B. if one of the d_{iB} is the smallest, i as a jet and removed from the algorithm 3. start over from step 1 until all objects are clustered

Distance measures are subject to choice, e.g. generalised k_T -algorithm:

$$
d_{ij} = \min(p_{\text{Ti}}^{2p}, p_{\text{Ti}}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = p_{\text{Ti}}^{2p}, \quad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2
$$

- \rightarrow jets defined by "cone size" R (input parameter)
- \rightarrow different choices of p yield different geometric properties of the jets

Jet algorithms — illustration

[\[Salam EPJC 67 \(2010\) 637\]](https://inspirehep.net/literature/822643) 113

Lecture 1 (yesterday):

- Hadrons, partons, and all that
- Colour charges
- QCD Lagrangian and Feynman rules
- QCD at test
- QCD-improved parton model

Lecture 2 (today):

- Fixed-order calculations and jets
- QCD radiation
- Running coupling and confinement
- QCD in event generators

Parton branching can occur in two ways:

Assume that parton evolution conserves probability (unitarity).

The probability for n emissions is given by Poisson statistics

$$
P(n, \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}
$$
 In parton, shows this is called Sudakov factor.

with "decay probability" λ .

Express decay probability in terms of splitting functions in the collinear limit:

By construction, the parton shower is unitary:

$$
d\sigma = \Delta(t_0, t_h) d\sigma + \int_{t_h}^{t_0} \frac{dt}{t} \int dz \, \Delta(t_0, t) P(z) d\sigma
$$

no branching between t_0 and t_h
int **binaching at scale** t
binomiality: starting from t_0 solve $\Delta(t_0, t)$

 t_0

Algorithmically: starting from t_0 solve $\Delta(t_0, t)$ for next branching scale t until hadronisation scale $t_{\rm h}$ is reached.

*t*3

…

Starting from a hard scale t_0 , a parton shower models additional radiation under the assumption that it is **soft** and/or **collinear** and **ordered**

 $(t_0 > t_1 > t_2 > \ldots > t_h)$

Additional loops and legs are only modelled approximately.

Lecture 1 (yesterday):

- Hadrons, partons, and all that
- Colour charges
- QCD Lagrangian and Feynman rules
- QCD at test
- QCD-improved parton model

Lecture 2 (today):

- Fixed-order calculations and jets
- QCD radiation
- Running coupling and confinement
- QCD in event generators

The strength of QCD interactions is governed by $\alpha_{\rm s}$, but each interaction receives infinitely many unobservable corrections, e.g. in $qq\to qq$:

The corresponding loop integrals require ultraviolet renormalisation:

- UV divergences are cancelled at unphysical scale *μ*
- Universal higher-order terms are absorbed into the definition of α_{s}

As a result, α_{s} becomes scale dependent with logarithmic scale dependency:

$$
\frac{d\alpha_s(\mu^2)}{d\log\mu^2} = \beta(\alpha_s), \quad \beta(\alpha_s) = -\alpha_s^2(\beta_0 + \beta_1\alpha_s + \beta_2\alpha_s^2 + \dots)
$$

Note: the dependence on μ vanishes at all orders in perturbation theory.

At Z-boson mass
$$
\alpha_{\rm s}(m_{\rm Z}) \approx 0.118
$$

Asymptotic freedom:

Nobel Prize 2004: Gross, Polizer, Wilczek At high energy scales $\alpha_{\rm s}^{} \rightarrow 0$, quarks and gluons are quasi-free

Confinement:

At $\Lambda_{\rm QCD}$ $\alpha_{\rm s} \to \infty$ (Landau pole), quarks and gluons bound in hadrons

- perturbation theory valid if $\mu \gg \Lambda_{\text{OCD}}$
- typical jet transverse momenta: $p_T \sim 50 \text{ GeV} - 5 \text{ TeV}$

Lecture 1 (yesterday):

- Hadrons, partons, and all that
- Colour charges
- QCD Lagrangian and Feynman rules
- QCD at test
- QCD-improved parton model

Lecture 2 (today):

- Fixed-order calculations and jets
- QCD radiation
- Running coupling and confinement
- QCD in event generators

How hard can it be?

Approximate all contributing amplitudes for this… …to all orders …including non-perturbative effects …then integrate it over a ~300 dimensional phase space

How hard can it be?

Approximate all contributing amplitudes for this…

- …to all orders …including non-perturbative effects
- …then integrate it over a ~300 dimensional phase space

Step 1: fixed-order perturbation theory Step 1: fixed-order perturbation theory

A priori, confinement prohibits a perturbative calculation.

0.35

 τ decay (N³LO) \rightarrow low Q^2 cont. (N³LO) \mapsto Scattered partons carry **QCD** and/or **electric charges.** This induces radiative corrections via QCD/electromagnetic bremsstrahlung.

Parton showers dress a fixed-order calculation with **additional radiation**, describing the evolution from the **parton level** (quarks, gluons, …) at large scales to the **particle level** (hadrons) at small scales.

Step 3: combine fixed-order and all orders

Large complementarity between fixed-order calculations and parton showers, so ideally combine them!

Fixed-order calculations \rightarrow hard jets

- reliable at high scales, without large scale hierarchies
- accurate predictions for limited number of legs (+ loops)
- determines perturbative accuracy (LO, NLO, NNLO, …)

Parton showers \rightarrow jet substructure

- reliable in unresolved regions, with large scale hierarchies
- approximate predictions for many particles
- determines logarithmic accuracy (LL, NLL, NNLL, …)

Matching and merging

 LO_m+PS

Matching

combine a fixed-order (typically NLO) calculation with a parton shower, **avoiding double-counting** of emissions

Merging

combine **multiple** (N)LO event samples into a **single** one, accounting for **shower radiation** and **avoiding double-counting**

What happens after one parton has been extracted from each proton?

Remnants can undergo multiple scatters \rightarrow multi-parton interactions (MPI)

How exactly the underlying event is modelled depends…

After first interaction, scale of MPI is sampled according to

$$
\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}^2} = \frac{1}{\sigma_{\mathrm{nd}}}\frac{\mathrm{d}\sigma(p_{\mathrm{T}}^2)}{\mathrm{d}p_{\mathrm{T}}^2}\exp\left(-\int\limits_{Q^2}^{Q^2_0}\mathrm{d}p_{\mathrm{T}}^2\,\frac{1}{\sigma_{\mathrm{nd}}}\frac{\mathrm{d}\sigma(p'^2_{\mathrm{T}})}{\mathrm{d}p'^2_{\mathrm{T}}}\right)
$$

Compare to parton shower:

$$
\frac{\mathrm{d}\mathcal{P}_{\text{Shower}}}{\mathrm{d}p_{\text{T}}^2} = \frac{\mathrm{d}p_{\text{T}}^2}{p_{\text{T}}^2} \int\limits_0^1 \frac{\alpha_{\text{s}}}{2\pi} P(z) \exp\left(-\int\limits_{Q^2}^{Q_0^2} \frac{\mathrm{d}p_{\text{T}}^2}{p_{\text{T}}'^2} \int\limits_0^1 \frac{\alpha_{\text{s}}}{2\pi} P(z)\right)
$$

Motivates to interleave MPI and parton-shower evolution

$$
\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\mathrm{T}}^2} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}^2} + \frac{\mathrm{d}\mathcal{P}_{\mathrm{Shower}}}{\mathrm{d}p_{\mathrm{T}}^2}\right) \times \exp\left(-\int\limits_{Q^2}^{Q_0^2} \left[\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_{\mathrm{T}}'^2} + \frac{\mathrm{d}\mathcal{P}_{\mathrm{Shower}}}{\mathrm{d}p_{\mathrm{T}}'^2}\right]\right)
$$

Step 5: confinement Step 5: confinement

At energies \sim 1 GeV, the parton shower is terminated, partons become confined

0.35

Step 5: confinement (and fragmentation) Step 5: confinement (and fragmentation)

Based on linear strong potential at large distances.

Based on preconfinement and local parton-hadron duality.

"Situated on the slopes of Mount Parnassus, a volcanic area, sulphuric vapour seeped from a crevice in the ground. There a local woman, the Pythia, would sit on a tripod and inhale the vapours. Her more-or-less incoherent screams would be interpreted by the local priesthood."

"Similarly the PYTHIA code is intended to provide you with answers to many questions you may have about high-energy collisions, but it is then up to you to use sane judgement when you interpret these answers."

