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• QCD-improved parton model
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• Fixed-order calculations and jets
• QCD radiation 
• Running coupling and confinement
• QCD in event generators
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I’m standing on the shoulders of giants…
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The content of these lectures is 
compiled from many different 
sources.

Previous HASCO lectures:
• Enrico Bothmann 2021 & 2022
• Daniel Reichelt 2023

“Standard” text books:
• Griffiths — Introduction to 

Elementary Particles
• Halzen, Martin — Quarks & 
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• Ellis, Stirling, Webber — QCD 

and Collider Physics
• Thomson — Modern Particle 

Physics
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Institut für Theoretische Physik,
Universität Göttingen 
HASCO 2021
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Daniel Reichelt

HASCO Summer School, Göttingen,  
17 July - 25 July 2023

Quantum Chromodynamics

https://indico.cern.ch/event/999261/timetable/
https://indico.cern.ch/event/1122790/timetable/
https://indico.cern.ch/event/1243861/timetable/


Quantum Chromodynamics — overview
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QCD describes strong interaction in the 
Standard Model of particle physics

Ingredients:
• quarks/antiquarks:

• basic constituents of matter
• 3 “families”, 6 “flavours” 

(up, down, charm, strange, top, bottom)
• 3 “colours”

• gluons:
• “mediators” of the strong force
• 8 “colours”

• strong coupling αs ≈ 0.1
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Proton structure
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In hadron colliders we collide protons with (anti-)protons.

Protons (and hadrons in general) are not elementary particles, but composite.
 need to understand the proton structure first!

We need a clean “projectile” to break up messy proton  electron beams

To resolve proton substructure we need electron wave lengths 
 deep inelastic scattering

→

→

λ ≪ rp
→

elastic inelastic deep inelastic



Deep inelastic scattering (DIS) I
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Ansatz* for double-differential cross section in terms of structure functions:
d2σ

dxdQ2 = 4πα2

Q2 ((1 − y) F2(x, Q2)
x

+ y
2 2F1(x, Q2))

virtuality Q2 := − q2 > 0

Kinematics parametrised as:

Bjørken- :   

inelasticity:  

x x = Q2

2p2q

y = p2q
p1p2

purely magneticelectric + magnetic*its derivation is
beyond the scope
of these lectures

Assumption: point-like electrons scatter from point-like quarks inside the proton

p1

p2

p3

p4



Deep inelastic scattering (DIS) II
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Two important observations:

Bjørken scaling: to first approximation, structure functions are independent of 

  and  

Callan-Gross relation: electrons scatter from point-like spin-  constituents (quarks)

Q2

F1(x, Q2) → F1(x) F2(x, Q2) → F2(x)
1
2

F2(x) = 2xF1(x)

Adapted from Thomson, data from [Friedman, Kendall ARNPS 22 (1972) 203] and [Bodek et al. PRD 20 (1979) 1471]

will see 
how true 
this is later

https://inspirehep.net/literature/74337
https://inspirehep.net/literature/140185


Flavour symmetry I
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The strong interaction treats all quarks equally
 assume approximate flavour symmetry between light quarks , , and 

       Not exact, because , but differences at most , which is a lot smaller   
       than typical hadron binding energies .

Express symmetry by unitary rotation in flavour space

• ignoring a trivial “rotation” , the matrices  form the group 
• each matrix can be written in terms of the eight generators  as 
• the generators  form a Lie algebra with commutator 

→ u d s
mu ≠ md ≠ ms ∼ 100 MeV

∼ 1 GeV

u′ 

d′ 

s′ 

=
U11 U12 U13
U21 U22 U23
U31 U32 U33

u
d
s

U = 1eiϕ U SU(3)
Ta U = eiλaTa

Ta [Ta, Tb] = if abcTc

sum convention!



Flavour symmetry II
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The  generators can be written in terms of Gell-Mann matrices as SU(3) Ta = 1
2 λa

Only two of these commute  two observable quantities (“quantum numbers”)

 third component of isospin: eigenstates of 

 flavour hypercharge: eigenstates of 

⇒
→ T3 = 1

2 λ3

→ Y = 1
3

λ8



Flavour symmetry III
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The light quarks are identified with the eigenstates of  and 

, , 

 light quarks form a flavour triplet, antiquarks a flavour anti-triplet:

T3 Y

u ≡ (
1
0
0) d ≡ (

0
1
0) s ≡ (

0
0
1)

→



Light mesons
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Mesons: bound  states

Structure of light mesons described by Clebsch-Gordan decomposition of direct 
product of a flavour triplet and a flavour anti-triplet: 

qq
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17

Mesons: bound  states

Structure of light mesons described by Clebsch-Gordan decomposition of direct 
product of a flavour triplet and a flavour anti-triplet: 

qq



Light mesons
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Mesons: bound  states

Structure of light mesons described by Clebsch-Gordan decomposition of direct 
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Light mesons
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Mesons: bound  states

Structure of light mesons described by Clebsch-Gordan decomposition of direct 
product of a flavour triplet and a flavour anti-triplet: 

qq



Light baryons
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Baryons: bound  (or ) states

Light baryon structure arises from Clebsch-Gordan decomposition of direct product 
of three flavour triplets:

qqq qqq



Light baryons
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Baryons: bound  (or ) states

Light baryon structure arises from Clebsch-Gordan decomposition of direct product 
of three flavour triplets:

qqq qqq
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Colour
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Problem: we observe hadrons in states such as 
• this is a completely symmetric state
• does this violate Fermi-Dirac statistics?

Solution: with an additional quantum number (“colour”) 
with three states, this can be anti-symmetrised as

All observed particles are colour-neutral, i.e.,
this quantum number is not observed directly!

 confinement

Δ++⟩ ≡ u↑u↑u↑⟩

Δ++⟩ = εijk ui
↑uj

↑uk
↑⟩

→



Colour gauge group I
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The three colour charges of quarks can be represented as

, , 

and each quark wave function carries an additional colour index 

Just as in QED, we impose invariance under a local gauge transformation

• ignoring a trivial “rotation” , the matrices  form the group 
• each matrix can be written in terms of the eight generators  as 
• the generators  form a Lie algebra with commutator 

r ≡ (
1
0
0) g ≡ (

0
1
0) b ≡ (

0
0
1)

ψ i
q

ψ i
q(x) → Ui

j ψ
j
q(x) = (eiλa(x)Ta)i

j
ψ j

q

U = 1eiϕ U SU(3)
Ta U = eiλa(x)Ta

Ta [Ta, Tb] = if abcTc

flavour

colour

We have seen this before!
But: despite the same structure, flavour  and colour 

 describe very different concepts!
SU(3)

SU(3)



Colour gauge group II
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Quarks transform according to the fundamental 
representation of 

   with indices 

Antiquarks transform according to the anti-fundamental
representation of 

   with indices 

Gluons transform according to the adjoint 
representation of 

   with indices 

Here,  are the  Gell-Mann matrices

SU(3)
(Ta)i

j = 1
2 (λa)i

j i, j ∈ {1,2,3}

SU(3)
(Ta) j

i = − 1
2 (λa *) j

i i, j ∈ {1,2,3}

SU(3)
(Ta

adj)bc = − i f abc b, c ∈ {1,…,8}

λa 3 × 3

1
2

(r r̄ − gḡ)

1
2

(r r̄ + gḡ − 2bb̄)



Colour algebra I
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Choose normalisation of generators as  with 

• Casimir invariants

Fundamental Casimir:         with   

Adjoint Casimir:                    with   

• Fierz identity:

Example: calculate fundamental Casimir using Fierz identity

    

Tr (TaTb) = TRδab TR = 1
2

(Ta)i
j(Ta) j

k = CFδi
k CF = TR

N2
C − 1
NC

f acd f bcd = CAδab CA = NC

(Ta)i
j(Ta)k

l = TR (δi
l δk

j − 1
NC

δi
jδk

l )

(Ta)i
j(Ta) j

k = TR (δi
kδ

j
j − 1

NC
δi

jδ
j
k) = TR (NC − 1

NC ) δi
k

= TR
N2

C − 1
NC

δi
k = CFδi

k



Colour algebra II
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Task: express structure constant in terms of fundamental generators



Colour algebra II
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Task: express structure constant in terms of fundamental generators

Solution:

 Fierz identity: all colour factors can be expressed in terms of (anti-)colour lines 

[Ta, Tb] = if abcTc

⇒ [Ta, Tb]Td = if abcTcTd

⇒ Tr ([Ta, Tb]Td) = if abcTr (TcTd) = iTR f abcδcd = iTR f abd

⇔ f abd = − i
TR

Tr ([Ta, Tb]Td)

+ δi
j

[PDG]

https://pdg.lbl.gov/2022/reviews/rpp2022-rev-mc-event-gen.pdf


Birdtracks I
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Colour factors can most easily be calculated using birdtrack diagrams
• Kronecker deltas are represented by colour lines  

(+ implicit summation over colour indices)

• generators and structure constants are represented by vertices

• there are  quark colours and  gluon colours

• generators are traceless

NC N2
C − 1

ji

a

= (Ta)i
j = i f abc

a

bc

= δaba b= δi
ji j

NC N2
C − 1

[Keppeler 1707.07280]

https://inspirehep.net/literature/1611314


Birdtracks II
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Rewrite  identities as birdtracks

• Casimir invariants

Fundamental Casimir:        

Adjoint Casimir:

• Fierz identity:

SU(NC)

= CF



Birdtracks III
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Example: calculate fundamental Casimir using Fierz identity with birdtracks
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The quark Lagrangian
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Free quark Lagrangian:

• yields the free Dirac equation 

• not invariant under  transformations 

Introduce covariant derivative to restore local gauge invariance:

This introduces interactions between the quark spinors  and the gluon field :

ℒquark = ψq iiγμ∂μψ i
q − mqψq iψ i

q

(iγμ∂μ − m)ψ i
q = 0

SU(3) ψq → eigsλa(x)Taψq

(Dμ)i
j := δi

j∂μ − igs(Ta)i
jAa

μ

ψ i
q Aa

μ

(iγμ∂μ − m)ψ i
q = − gsγμTaAa

μψ i
q



The gluon Lagrangian
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The field-strength tensor is defined as the commutator of the covariant derivative:

 

It obeys the Yang-Mills equation of motion

The corresponding Lagrangian is given by

which is invariant under  transformations due to gauge freedom of 

Fc
μν = 1

igs
[Dμ, Dν]

= ∂μAc
ν − ∂νAc

μ − gs f abcAa
μ Ab

ν

∂μFa μν + gs f abcAb
μFc μν = gsψqγνTaψq

ℒgluon = − 1
4 Fa

μνFa μν

SU(3) Aa
μ

compare to Maxwell eqs.
in Lorenz gauge:

∂μ∂μAν = jν



QCD as a non-abelian gauge theory
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Quark Lagrangian:

Gluon Lagrangian:

   with   

Final QCD Lagrangian:

Note: quantisation requires gauge-fixing terms and so-called ghost fields (ignored for now).

ℒquark = ψq iiγμ(Dμ)i
jψ i

q − mqψq iψ i
q

ℒgluon = − 1
4 Fa

μνFa μν Fc
μν = ∂μAc

ν − ∂νAc
μ − gs f abcAa

μ Ab
ν

ℒQCD = − 1
4 Fa

μνFa μν + ψq i (iγμ(Dμ)i
j − δi

j mq) ψ j
q



More than one way to skin a cat…
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Two approaches to solve equations of motions as governed by QCD Lagrangian

Lattice QCD                                       Perturbative QCD



Lattice QCD
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Idea: [Wilson PRD 10 (1974) 2445]
• quantise QCD on a discrete lattice in  

euclidean space time
• finite lattice spacing  acts as infrared regulator
• solve path integrals numerically

 suitable to calculate non-perturbative hadron properties 
 not suitable for large-scale collider processes

a

→
→

[BMW collaboration 0906.3599][Bali, Schilling PRD 46 (1992) 2636-2646]

strong potential hadron masses

https://inspirehep.net/literature/89145
https://inspirehep.net/literature/804184
https://inspirehep.net/literature/31803


Perturbative QCD
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Idea: 
at high scales   series expansion in powers of the strong coupling 

 improve prediction by successively correcting leading-order approximation
(leading order, next-to-leading order, next-to-next-to-leading order, …)

Example:

Need: set of universal rules to calculate cross sections order by order

αs ≈ 0.1 ⇒ αs
dσ ∼ C0 + αsC1 + α2

s C2
⏟

small

+ α3
s C3

⏟
smaller

+ …
negligible?

→

1
7 = 1

10 (1 − 3
10 )

−1
≈ 1

10 (1 + 0.3 + 0.09 + 0.027 + …)

Exact: 0.142857143          Sum:      0.1    0.13     0.139     0.1417
                                          Error:     30%    9%       3%          1%

LO NLO NNLO N3LO



Feynman rules of QCD — vertices
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Three types of vertices in QCD

• quark-gluon vertex (  fermion-photon vertex in QED)

• pure gluon vertices (result of non-abelian structure of )

∼

SU(3)



Feynman rules of QCD — propagators
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Propagators  Green’s functions of inhomogeneous equations of motion

• gluon propagator (vector propagator)

• quark propagator (spinor propagator)

=̂

= δAB
−gαβ + (1 − λ) pα pβ

p2 + iε

p2 + iε
λ=1= δAB −gαβ

p2 + iε

= δa
b

i /p + m
p2 − m2 + iε
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Quark production at lepton colliders
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Simplest process involving quarks: 
(does not actually involve any QCD!)

Differential cross section:

           

Inclusive cross section via integration over  

solid angle :

e+e− → γ*/Z → qq

dσe+e−→qq

dΩ = α2

4s
(1 + cos2 θ) NC ∑

q
Q2

q

∫ dΩ =
1

∫
−1

d cos θ
2π

∫
0

dϕ

σe+e−→qq = 4πα2

3s
NC ∑

q
Q2

q
[CELLO collaboration PLB183 (1987) 400]

e+

e−

q̄

q

γ*/Z

quarks have spin 1
2

https://inspirehep.net/literature/236981


The -ratioR
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[Particle Data Group]

σe+e−→qq = 4πα2

3s
NC ∑

q
Q2

q

u, d, s u, d, s, c

https://pdg.lbl.gov/2013/hadronic-xsections/rpp2013-sigma_R_ee_plots.pdf


Existence of the gluon

44
[Wu, Zobernig TASSO Note No. 84][JADE ]

quark
anti-quark

gluon

https://pdg.lbl.gov/2013/hadronic-xsections/rpp2013-sigma_R_ee_plots.pdf
https://pdg.lbl.gov/2013/hadronic-xsections/rpp2013-sigma_R_ee_plots.pdf


Spin of the gluon
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[Wu PR 107 (1984) 59] [CELLO Collaboration PLB 110 (1982) 329]

https://inspirehep.net/literature/201529
https://inspirehep.net/literature/169195


Gluon self-coupling
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[Bethke PR 403-404 (2004) 203]

https://inspirehep.net/literature/652876


Non-abelian structure and Casimirs
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[L3 Collaboration PLB 248 (1990) 227] [Kluth NPB Suppl. 133 (2004) 36]

https://inspirehep.net/literature/298080
https://inspirehep.net/literature/298080


Proton structure revisited

48[PDG]

Independence of structure functions 
 and  on  only 

approximately true at medium  and .
F1(Q2, x) F2(Q2, x) Q2

x Q2

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-structure-functions.pdf
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QCD dynamics in the proton
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In our simple DIS model we neglected QCD dynamics in the proton!

At first order in QCD, the DIS sub-process 
receives a correction from 

What is the effect of the gluon emission on the structure functions?

γ*q → q
γ*q → qg



Consider the -channel contribution to s γ*q → qg

=

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γν

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)ε*μ (p4)

First-order corrections in DIS
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p3

p4

q

p2



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)ε*μ (p4)

= ū(p3)(−igs)Taγμ i /p34
p2

34
(−ie)γνu(p2)εν(q)ε*μ (p4)

First-order corrections in DIS
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p3

p4

q

p2

In the collinear limit ,
the intermediate quark 
goes on-shell 

3 ∥ 4

p2
34 → 0



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)ε*μ (p4)

= ū(p3)(−igs)Taγμ i /p34
p2

34
(−ie)γνu(p2)εν(q)ε*μ (p4)

→ ū(p3)(−igs)Taγμ
i∑λ uλ(p34)ūλ(p34)

p2
34

(−ie)γνu(p2)εν(q)ε*μ (p4)

First-order corrections in DIS
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p3

p4

q

p2

In the collinear limit ,
the intermediate quark 
goes on-shell 

3 ∥ 4

p2
34 → 0

for on-shell p

∑
λ

uλ(p)ūλ(p) = /p



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)ε*μ (p4)

= ū(p3)(−igs)Taγμ i /p34
p2

34
(−ie)γνu(p2)εν(q)ε*μ (p4)

→ ū(p3)(−igs)Taγμ
i∑λ uλ(p34)ūλ(p34)

p2
34

(−ie)γνu(p2)εν(q)ε*μ (p4)

= gsTa 1
p2

34 ∑
λ

[ū(p3)/ε*(p4)uλ(p34)][ūλ(p34)(−ie)/ε(q)u(p2)]

First-order corrections in DIS
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p3

p4

q

p2

In the collinear limit ,
the intermediate quark 
goes on-shell 

3 ∥ 4

p2
34 → 0



Consider the -channel contribution to s γ*q → qg

= ū(p3)(−igs)Taγμ i( /p3 + /p4)
(p3 + p4)2 (−ie)γνu(p2)εν(q)ε*μ (p4)

= ū(p3)(−igs)Taγμ i /p34
p2

34
(−ie)γνu(p2)εν(q)ε*μ (p4)

→ ū(p3)(−igs)Taγμ
i∑λ uλ(p34)ūλ(p34)

p2
34

(−ie)γνu(p2)εν(q)ε*μ (p4)

= gsTa 1
p2

34 ∑
λ

[ū(p3)/ε*(p4)uλ(p34)] ×

First-order corrections in DIS
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p3

p4

q

p2

In the collinear limit ,
the intermediate quark 
goes on-shell 

3 ∥ 4

p2
34 → 0

collinear
emissions factorise!



In the collinear limit, the squared amplitude becomes

,  

The effect of the gluon emission on the cross section is given by

We can now write the structure functions as

|ℳγ*q→qg |2 ∼ g2
s

1
p2

34
Pqg(z) |ℳγ*q→q |2 Pqg(z) = CF

1 + z2

1 − z

σγ*q→qg ∼ σγ*q→qg2
s

1
8π2

Q2

∫
μ2

ds34
s34

Pqg(z) = σγ*q→q
αs
2π

Pqg(z)log Q2

μ2

2F1(x, Q2) = ∑
i

Q2
i

1

∫
x

dy
y

fi(y)(δ(1 − x
y ) + αs

2π
Pqg( x

y )log Q2

μ2 )

Scaling violations

63

no scaling logarithmic scalingparton distribution function

reference scale



Scaling violations
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logarithmic scaling  ✓

[ZEUS Collaboration PRD 67 (2003) 012007]

https://inspirehep.net/literature/593048


Parton distribution functions (PDFs)   parametrise the probability to find a 
parton  with energy fraction  at scale  in the proton.

PDFs are intrinsically non-perturbative and have to be measured at some scale .

“Running” of PDFs with scale  described by collinear evolution.
see previous slides

fa(xa, Q2)
a xa Q2

Q2

Q2

Parton distribution functions
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u
d
c
s
g (×0.1)

ū
d̄
c̄
s̄
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0
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x
f(

x,
µ
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)

u
d
c
s
g (×0.1)

ū
d̄
c̄
s̄
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0
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0.3

0.4

0.5

0.6
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x
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µ
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Assume that at scale  the hadronic cross section factorises into long-distance 
(hadronic) and short-distance (partonic) parts:

Factorisation in terms of transverse momentum  of partons

• emissions with  implicitly included in PDFs

• emissions with  explicitly described by hard process

μF

dσpp→X = ∑
a,b

1

∫
0

dxa

1

∫
0

dxb fa(xa, μF)fb(xb, μF) d ̂σ(xa, xb, μF)

pT
pT ≲ μF
pT ≳ μF

Factorisation
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Tomorrow we’ll see how we can utilise this to simulate collider events…


