# High precision $^{209}$ Bi(n, $\gamma$ ) cross section measurement at nTOF EAR2

G. de la Fuente Rosales<sup>1</sup>, <u>J. Balibrea-Correa<sup>1</sup></u>, C. Domingo-Pardo<sup>1</sup>,

B. Gameiro<sup>1</sup>, J. Lerendegui-Marco<sup>1</sup>, V. Babiano-Suárez<sup>2</sup>, I. Ladarescu<sup>1</sup>, A. Casanovas<sup>3</sup>, F. García<sup>4,5</sup>, M. Bacak<sup>5,6</sup> and nTOF collaboration.

- <sup>1</sup> Instituto de Física Corpuscular (IFIC), CSIC
- <sup>2</sup> Universidad de Valencia
- <sup>3</sup> Universitat Politècnica de Catalunya, Spain
- <sup>4</sup> University of Granada, Spain
- <sup>5</sup> European Organization for Nuclear Research (CERN), Switzerland
- <sup>6</sup> University of Manchester, United Kingdom

erc European Research Council



Vniver§itat d València





EURO-LABS 3rd annual meeting: 27-30 October 2024



#### Gen-IV & ADS nuclear systems



Figure adapted from https://www.psi.ch/en/fast



New generation of advanced nuclear power plants (GenIV) and ADS is under design and development aiming to:

- Excel safety and reliability during operation.
- **Sustainability** energy generation and minimization of nuclear waste in long-term.
- Comply with **Non proliferation** agreements.

**Development** on nuclear technology requires **improvement** on **nuclear data** accuracy:

- Delayed neutron emission probabilities.
- Neutron induced cross sections.



## MYRRHA and <sup>210</sup>Po production



#### Figure adapted from https://www.sckcen.be/en/expertises-0



MYRRHA is a multipurpose Accelerator Driven System (ADS) nuclear reactor able to operate in subcritical and critical mode. It is made of:

- 600 MeV Proton accelerator.
- Spallation target.
- A core with MOX fuel **cooled** by liquid **lead-bismuth** (Pb-Bi).



**Radiological Burden** associated with the use of Pb-Bi coolant is because of <sup>209</sup>Bi(n,y) populating <sup>210</sup>Bi and <sup>210m</sup>Bi: <sup>210</sup>Po (t<sub>1/2</sub>~5 days)/<sup>206</sup>Tl (t<sub>1/2</sub>~3My)

Calculations for <sup>210</sup>Po concentration for MYHRRA in one irradiation ranges from 5 to 20% depending on the evaluation.

### <sup>209</sup>Bi(n, $\gamma$ ) XS and challenges





Figure adapted from L. Fiorito et al. EPJ Nuclear Sci. Technol. (2018) 4, 48



- 5-10% accuracy in RRR covering neutron energies range from thermal up to 35 keV.
- <15% accuracy in the neutron energy range from 35-100 keV.





#### The nTOF facility @ CERN







#### Experimental setup @ nTOF EAR2





The experiment took place in **April 2024** at the **nTOF EAR2** using the **state-of-the-art (n,y)** experimental setup:

- Lightweight sample holder design to minimize dead material around the target under study.
  - Reduce background from scattered neutrons
- 9 sTEDs in compact configuration @90° and 4.5 cm from the target position:
  - High sensitivity  $(n, \gamma)$  detection setup.
- 2 C<sub>6</sub>D<sub>6</sub> detectors @135° and 17 cm and 20 cm from target:
  - Angular anisotropies + other possible systematics.
- **SiMOn2** : neutron beam monitoring/rel. normalization.

Experimental setup especially well suited for small (n,y) cross sections and/or high radioactive targets



High precision measurement







#### Preliminary <sup>209</sup>Bi(n,y) data







After a very preliminar background subtraction:

- Different neutron resonance shape between thin and thick target data
  - We can account for MS and other systematics thanks to both datasets!
- Expected useful thin and thick datasets up to E<sub>n</sub>~30 keV
- For **E**<sub>n</sub>>30 keV, only the thick target will be of use.





- <sup>209</sup>Bi(n,y) cross section is important for both, nuclear energy applications and nuclear astrophysics:
  - Critical to assess the radiological burden associated to <sup>210</sup>Po for GenIV and ADS systems cooled by Bi/Pb mixtures.
  - <sup>209</sup>Bi(n,y) is **important** for **s-process** and for **U/Th clocks**.
- Measurement very **challenging** because:
  - Small (n,γ).
  - (n,ɣ)/(n,el)<<1.
- Present <u>high precision <sup>209</sup>Bi(n,γ) cross section measurement</u> goals:
  - 5-10% uncertainty in RRR En<35 keV.
  - o <15% uncertainty in NRR 35 keV<En< 100 keV.</p>
- It took place in April 2024 at the high luminosity nTOF EAR2:
  - Experimental setup design to enhance sensitivity
  - Several efforts over background estimation and normalization
  - **2 targets** with different **thicknesses** to control MS and Self-Shielding
- Very promising preliminary results from both thin and thick targets:
  - Analysis just started!

**Experiment** design to overcome previous measurements.



G. de la Fuente phD candidate





# Thank you very much for your attention!







• Introduction

• The nTOF facility and the experimental setup

• Very preliminary results

• Summary & conclusions



#### s-process & Th/U cosmic clocks



Figure adapted from U. Ratzel et al Phys. Rev. C 70 065803 (2004)

From the **astrophysical** point of view,  $^{209}Bi(n,y)$  is **important** for understanding the chemical evolution of the Universe via s-process and for U/Th cosmic clocks:

- <sup>209</sup>Bi is the last stable s-process nucleus before the  $\alpha$ -unstable region feeding to the region above <sup>206</sup>Pb recycling heavy material.
- <sup>209</sup>Bi(n,y) also contribute to <sup>207</sup>TI branching point towards production of <sup>207</sup>Pb.
- Th/U ratios, used as cosmic clocks for stars, needs accurate data on  $^{209}$ Bi(n, $\chi$ ) to disentangle radiogenic contributions from **Th** and **U**  $\alpha$ -chain decays.





#### XS & neutron reaction yield



There is a catch: the microscopic  $\sigma_{\gamma}(En)$  cross-section is not an experimental observable; the reaction yield  $Y_{\gamma}(En)$  is:

$$Y(E_n) = Y_0(E_n) + Y_1(E_n) + Y_2(E_n) + \mathcal{O}(\Sigma^4)$$

Y<sub>0</sub>= capture Y<sub>1</sub>= scattering+capture Y<sub>2</sub>=scattering+scattering+capture

$$\mathscr{L}_{n}(E_{n}) = \prod_{i=0}^{n-1} \left[ \int_{0}^{l_{max,i}} \Sigma e^{-\Sigma\sigma_{T}(E_{n,i})l_{i}} dl_{i} \int \frac{d\sigma_{nn}(E_{n})}{d\Omega} d\Omega_{i} \right] \int_{0}^{l_{max,n}} \Sigma\sigma_{\gamma}(E_{n,n}) e^{-\Sigma\sigma_{T}(E_{n,n})l_{n}} dl_{n}$$

#### Is this important?

Yes, for measurements with the following characteristics:

• Small  $\sigma_{\gamma}(E_n)$ 

• 
$$\sigma_{\gamma}(E_n)/\sigma_n(E_n) << 1$$

• Thick targets

|   |                        | _  |
|---|------------------------|----|
| 4 | <sup>209</sup> Bi(n,ɣ) | Ì  |
|   |                        | -' |







#### <sup>209</sup>Bi(n, $\gamma$ ) **ORNL** using **C**<sub>6</sub>**F**<sub>6</sub> detectors in **1976**

<sup>209</sup>Bi(n, $\gamma$ ) **nTOF** using **C**<sub>6</sub>**D**<sub>6</sub> detectors @ EAR1 in 2006

TABLE I. Capture parameters for resolved resonances in  $^{203}$ Bi $(n, \gamma)$ . Many resonances above 30 keV were not fitted individually and those analyzed correspond to those reported in neutron transmission measurements (Refs. 1 and 2).

| $E_{\circ}$ (eV) | 1 | J | $\Gamma_n$ (meV) | $\Gamma_{\gamma}$ (meV) | $g\Gamma_{\gamma}\Gamma_{n}/\Gamma$ (meV |
|------------------|---|---|------------------|-------------------------|------------------------------------------|
| 801.6(1)         | 0 | 5 | 4309(145)        | 33.3(12)                | 18.2(6)                                  |
| 2323.8(6)        | 0 | 4 | 17888(333)       | 26.8(17)                | 12.0(8)                                  |
| 3350.83(4)       | 1 | 5 | 87(9)            | 18.2(3)                 | 9.5(2)                                   |
| 4458.74(2)       | 1 | 5 | 173(13)          | 23.2(22)                | 11.3(11)                                 |
| 5114.0(3)        | 0 | 5 | 5640(270)        | 65(2)                   | 35.3(11)                                 |
| 6288.59(2)       | 1 | 4 | 116(18)          | 17.0(17)                | 6.7(7)                                   |
| 6525.0(3)        | 1 | 3 | 957(100)         | 25.3(14)                | 8.6(5)                                   |
| 9016.8(4)        | 1 | 6 | 408(77)          | 21.1(14)                | 13.0(9)                                  |
| 9159.20(7)       | 1 | 5 | 259(45)          | 21.4(21)                | 10.9(11)                                 |
| 9718.910(1)      | 1 | 4 | 104(22)          | 74(7)                   | 19.5(21)                                 |
| 9767.2(3)        | 1 | 3 | 900(114)         | 90(8)                   | 28.7(26)                                 |
| 12098            |   |   |                  |                         | 65(4) <sup>c</sup>                       |
| 15649.8(1.0)     | 1 | 5 | 1000             | 47(4)                   | 20.2(17)                                 |
| 7440.0(1.3)      | 1 | 6 | 1538(300)        | 32(3)                   | 20.4(18)                                 |
| 17839.5(9)       | 1 | 5 | 464(181)         | 43(4)                   | 21.7(20)                                 |
| 20870            | 1 | 5 | 954(227)         | 34.4(33)                | 18.3(17)                                 |
| 21050            | 1 | 4 | 7444(778)        | 33(3)                   | 14.8(13)                                 |
| 22286.0(9)       | 1 | 5 | 181(91)          | 33.6(32)                | 15.1(15)                                 |
| 23149.1(1.3)     | 1 | 6 | 208(154)         | 25.3(25)                | 14.7(15)                                 |

| E        | Cnergy (keV) <sup>a</sup> | $g\Gamma_n\Gamma_\gamma/\Gamma$ (meV) | Energy (keV) <sup>a</sup> | $g\Gamma_n\Gamma_\gamma/\Gamma$ (meV) |
|----------|---------------------------|---------------------------------------|---------------------------|---------------------------------------|
|          | 0.8000 <sup>b</sup>       | 25.0± 3.0 <sup>b</sup>                | 27.45 <sup>e</sup>        | $156.5 \pm 21.6$                      |
|          | 2.310 <sup>b</sup>        | $20.0 \pm 10.0$ °                     | 28.79                     | $11.5 \pm 2.0$                        |
|          | 3.351                     | $10.9 \pm 0.1^{d}$                    | 29.01                     | 8.9± 1.9                              |
|          | 4,458                     | 10.8± 0.2                             | 29,20                     | $12.7 \pm 2.2$                        |
|          | 5.113                     | 40.8± 0.6                             | 29,52                     | $10.5 \pm 2.0$                        |
|          | 6.289                     | 6.4± 0.2                              | 30.48                     | $18.0 \pm 4.0$                        |
|          | 6.527                     | 9.1 ± 0.2                             | 32.73                     | $5.1 \pm 2.7$                         |
|          | 9.018                     | 10.6± 0.4                             | 32.90                     | $16.0 \pm 6.5$                        |
|          | 9.159                     | 9.6± 0.4                              | 33,31                     | $243.0 \pm 18.0$                      |
|          | 9.375                     | 0.8± 0.3                              | 34.68                     | $29.0 \pm 4.0$                        |
|          | 9.718                     | 21.7± 0.6                             | 37.25                     | $11.2 \pm 3.9$                        |
|          | 9.766                     | 21.2 ± 0.6                            | 38.10                     | 38.1± 3.9                             |
|          | 12.09                     | 7.7± 0.9                              | 39.17                     | $22.5 \pm 4.1$                        |
| <u> </u> | 12.10                     | 49.0± 7.8                             | 42,40                     | 19,2 ± 4,5                            |
|          | 12,24                     | 3.6 ± 0.7                             | 43.60                     | $13.7 \pm 4.0$                        |
| 1        | 14.88                     | 10,1 ± 0,9                            | 44.09                     | 5.1 ± 3.8                             |
|          | 15,51                     | 68.0± 9.3                             | 44.60                     | $30.2 \pm 4.2$                        |
|          | 15.65                     | $21.8 \pm 1.3$                        | 45,18                     | 28.8± 5.0                             |
|          | 17.44                     | $16.7 \pm 1.0$                        | 45.56                     | $129.0 \pm 12.2$                      |
|          | 17.83                     | $21.7 \pm 1.0$                        | 46.49                     | $17.8 \pm 5.0$                        |
|          | 20.86                     | 12.8± 0.9                             | 49.85                     | 28.6± 5.2                             |
|          | 21.06                     | $15.8 \pm 1.2$                        | 51.74                     | 8.4 ± 5.4                             |
|          | 22.27                     | $18.2 \pm 1.1$                        | 52.77                     | $5.1 \pm 5.6$                         |
|          | 23.13                     | $11.2 \pm 1.1$                        | 53.70                     | $33.2 \pm 7.3$                        |
|          | 23.85                     | 5.0 ± 1.1                             | 54,22                     | $23.4 \pm 5.8$                        |
| _!       | 24,20                     | $5.0 \pm 1.1$                         | 55,42                     | $15.1 \pm 5.8$                        |
|          | 25.27                     | 30.7± 2.2                             | 57.76                     | $5.1 \pm 5.8$                         |
|          | 27.05                     | 70.4± 3.7                             | 61.57                     | $64.4 \pm 9.1$                        |
| - 1      | 27.29                     | $12.8 \pm 2.2$                        | 69.14                     | $216.0 \pm 25.1$                      |
|          |                           |                                       | R                         | Macklin Phys. Rev. C. 14 4 (1976)     |

Might be affected by **systematics** associated with experimental **W.F.** and **n-sensitivity** (C<sub>c</sub>F<sub>c</sub>)

**Goals** of the present  $^{209}Bi(n, \gamma)$  measurement:

- 5-10% accuracy in RRR covering neutron energies range from thermal up to 35 keV.
- <15% accuracy in the neutron energy range from 35-100 keV.