Search for E1 strength below the Giant Dipole Resonance from zero to finite temperature in Ni isotops at

IFIN-HH and <u>NLC-CCB facilities</u>

AGNESE GIAZ Oliver Wieland INFN sez. Milano Italy Search for E1 strength below the Giant Dipole Resonance from zero to finite temperature in Ni isotops at IFIN-HH and NLC-CCB facilities



One scientific Question studied in 2 different experimental facilities for a complementary research project





**NLC-CCB facilities** 

# Search for E1 strength below the Giant Dipole Resonance from zero to finite temperature in <u>Ni</u> isotops at



In total 120 overall project partecipants

and

### 80 Persons @ IFIN HH+ ELI NP 11 Persons took Eurolabs support

40 Persons @ CCB + IFJ 6 Persons took Eurolabs support. Why to study resonances in nuclei around the particle separation energy below the Gian Dipole Resonance in Neutron rich Nuclei ?



#### <u>Please note</u>

Relation between neutron skin and neutron stars (both built on n-rich nuclear matter so that one-to-one correlations can be drawn)

Relation between EOS and <u>neutron star mergers</u>





Stellar environment → <u>unstable</u> n-rich nuclei where it is

difficult to extrapolate from stable to unstable nuclei with theory

We need Experimental DATA !!!







# Question

- $\rightarrow$  What happens to the Pygmy Resonance when going from GS to E\* (Temperature) and Rotation ?
- $\rightarrow$  The Pygmy Resonance will **form** and **survive** inside a rotating **CN** ?
- $\rightarrow$  Adding deformation, with increas of radius, thermal fluctuations ?
- $\rightarrow$  Change of proton distribution/radius & neutron distribution/radius ?
- → Change in **skin thickness** ??
- $\rightarrow$  Emissing of LCP, neutrons and  $\gamma$  ?

### • The Idea: Measure From « 0 to HOT PYGMY»

photo absorption for long isotopic chain from ground state to finite temperature



One scientific Question to be answered in two different laboratories with 2 different Methods !



### **Predictions 1**





![](_page_7_Picture_1.jpeg)

## **Predictions 2**

The cumulative sum of the isovector dipole strength (in units of  $fm^2$ ) in nickel isotopes below 12.0 MeV.

| SLy5             | $T=0.0{\rm MeV}$ | $T = 0.7 \mathrm{MeV}$ | $T = 1.0 \mathrm{MeV}$ | $T = 2.0 \mathrm{MeV}$ |                                                                                                        |
|------------------|------------------|------------------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------|
| <sup>56</sup> Ni | 0.013            | 0.0742                 | INCREASE               | between T              | = 1 and 2 MeV                                                                                          |
| <sup>58</sup> Ni | 0.301            | 0.230                  | 0.310                  | 0.778                  |                                                                                                        |
| <sup>62</sup> Ni | 0.628            | 0.570                  | 0.538                  | 0.828                  | E. Yüksel <sup>1</sup> , G. Colò <sup>2,3</sup> , E. Khan <sup>4,a</sup> , and Y.F. Niu <sup>5,6</sup> |
| <sup>66</sup> Ni | 0.670            | 0.641                  | 0.626                  | 0.935                  | Eur. Phys. J. A (2019) 55: 230<br>DOI 10.1140/epja/i2019-12918-8                                       |
|                  |                  |                        | «therma                | l unblocking           | g, threshold effect»                                                                                   |

Eur. Phys. J. A (2019) 55: 230

**Table 2.** The critical temperature  $(T_c)$  values (in MeV) for the selected nickel isotopes using SkI3 and SLy5 interactions.

|                  | SkI3 | SLy5 |
|------------------|------|------|
| <sup>58</sup> Ni | 0.84 | 0.69 |
| <sup>62</sup> Ni | 1.01 | 0.93 |
| <sup>66</sup> Ni | 0.82 | 1.0  |

#### **Critical Temperature** where

properties are changed and differ measurably from Ground State properties, pairing correlations vanish and occupation probabilities change strongly

![](_page_8_Picture_0.jpeg)

**Compound nucleus (CN)** system (Measure and calculate Statistical decay cascade  $\gamma$  and of particles (mainly n, p, alpha)). T>0

With Stable Targets in the ground state and as pure as possible virtual photon excitation

with proton high energy beam. Direct Virtual Photon excitation. T=0

![](_page_9_Picture_0.jpeg)

EXPERIMENT **DDITIONA** 

## Experimental SETUP1 (IFIN)

for T>0

ELIFANT-GG@IFIN 2022 And recently 2024

21 Bromide\* scintillator Detector-array with AC-shield and <u>4 HPGe</u>

11 3x3 inch LaBr<sub>3</sub>:Ce 10 3x3 inch CeBr<sub>3</sub>

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

![](_page_10_Picture_9.jpeg)

large-volume Nucl. al Aogaki et. ELI-NP Ś with the Candem (2023)68628 0 Z **OSCO** 5 th 056 Sp 2 energy CeBr<sub>3</sub> Phy Methods and <u>[</u>] Ο Instrum. setup LaBr<sub>3</sub>:(

![](_page_11_Figure_0.jpeg)

**<u>REMARK</u>**: To reproduce the lower extra yield effect by deformation (angular momentum) an unphysical one is needed and additionally the GDR part will not be reproduced anymore

S

ESU

N

DITIONA

**AD** 

Preliminary Result from 2024 exp. Hot extra Yield bellow GDR in neutron rich (exotic) <sup>66,64</sup>Ni at different T

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_0.jpeg)

Gamma decay to the ground state from the excitations above the neutron threshold in the 208Pb(p,p' gamma) reaction at 85 MeV B Wasilewska, et al. Physical Review C 105 (1), 014310 2022

# Experimental SETUP (CCB) for T=0

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

15

#### Search for PDR

![](_page_15_Figure_0.jpeg)

#### Search for PDR

# Results of the <sup>58,62</sup>Ni Experiement (CCB) for T=0

![](_page_16_Figure_1.jpeg)

Search for PDR

• Results

evidence of a possible extra (initial) strength at T=0 and T>0

does not arise from deformation (angular momentum) effects or n

- located <u>bellow</u> GDR and with Strength around 1-8 % of total GDR-EWSR
- <u>appears not strong in N=Z nucleus</u>, but (only) in N=Z+xn nucleus in ground state
   and growing with excitation energy (CN Temperature up to 2 MeV) in rotating
   nucleus formed in fusion evaporation reaction

CCB

**IFIN-HH** 

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_6.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

Theory: Must include rotation and angular momentum in predictions

Cold PDR has STRONG impact on stellar processes, neutron star collisions, mergers,...:

What is the total ASTROPHYSICAL impact of HOT +COLD PDR ?

→ WHATS NEXT IN 2026,27,28,..:

Go further, different isotopic CHAIN and do things better Better Resolution, Better Residues detection,

to enter in astrophysical region and benchmark Theory

Go further... proton rich side ...? Proton skin ??

![](_page_18_Picture_10.jpeg)

# Thanks a lot to collaborators from IFIN, ELI, IFJ-PAN INFN, et al.

![](_page_19_Picture_1.jpeg)

A. Bracco<sup>1</sup>, F. Camera<sup>1</sup>, F. Crespi<sup>1</sup>, A. Giaz<sup>1</sup>, O. Wieland<sup>1</sup>,
G. Benzoni<sup>1</sup>, S. Bottoni<sup>1</sup>, S. Brambilla<sup>1</sup>, S. Leoni<sup>1</sup>, B. Million<sup>1</sup>,
M. Ciemala<sup>2</sup>, M. Kmiecik<sup>2</sup>, A. Maj<sup>2</sup>,
D. Balabanski<sup>4</sup>, M. Cuciuc<sup>4</sup>, D. Testov<sup>4</sup>,
A. Kusoglu<sup>4</sup>, P.-A. Söderström<sup>4</sup>, ...
C. Clisu<sup>5</sup>, C. Costache<sup>5</sup>, N. Florea<sup>5</sup>, I. Gheorghe<sup>5</sup>, A.
Ionescu<sup>5</sup>, N. Margiean<sup>5</sup>, C. Mihai<sup>5</sup>, R. Mihai<sup>5</sup>, C. Nita<sup>5</sup>, L.
Stan<sup>5</sup>, A. Turturica<sup>5</sup>, ...

### et al

<sup>1</sup>Università degli Studi di Milano and INFN, Milano, Italy <sup>2</sup>IFJ-PAN, Krakow, Poland <sup>4</sup>ELI-NP, Măgurele, Romania <sup>5</sup>IFIN-HH, Măgurele, Romania