

Irradiation to extreme neutron fluences

WP4 – Highlight presentation

Igor Mandić, Jožef Stefan Institute, Ljubljana Slovenia

Radiation damage

- detectors for tracking of charged particles in particle physics
- main radiation problem for Si detectors (and similarly for other semiconductors) is displacement damage:
 - particle knocks Si atom from the crystal lattice
 - knocked Si can displace neighboring atoms cluster defect

cluster defect

→ localized energy levels in the energy band gap

Radiation damage

density of localized energy levels proportional to fluence ϕ

→ increase of full depletion voltage

→ increased detector current

- increased charge carrier trapping probability → lower signal
- displacement damage proportional to Non Ionizing Energy Loss (NIEL) of irradiation particles
- amount of NIEL expressed in units of equivalent fluence of 1 MeV neutrons in Si (Φ_{eq})
 - \rightarrow but: effects on detector performance depend on particle type, not only on Φ_{eq}
 - $\rightarrow \Phi_{ea}$ is still a useful unit when different radiation sources are used

EUR@+LABS

Radiation damage

Charge collection efficiency drops with increasing fluence

→ must operate at higher bias voltage to compensate

Leakage current increases with fluence

→ detectors must be cooled

30000 10^{-1} • n-type FZ - 7 to 25 K Ω cm 25000 Most Probable Signal (el) □ n-type FZ - 7 KΩcm 10^{-2} Solution Instruction Instructio Instruction Instruction Instruction Instructi $[A/cm^3]$ □ n-type FZ - 3 KΩcm 20000 p-type EPI - 2 and 4 KΩcm 10^{-3} 15000 n-type FZ - 780 Ωcm $\Delta I / V$ 10^{-4} 10000 o n-type FZ - 410 Ωcm Bias = 500 V Δ n-type FZ - 130 Ωcm Bias = 900 V ▲ n-type FZ - 110 Ωcm ▲ Bias up to 1700 V 5000 • n-type CZ - 140 Ωcm p-type EPI - 380 Ωcm 10^{-6} 10 $10^{\overline{14}}$ 10^{2} 10^{12} 10^{13} 10^{11} 10^{15} Φ_{eq} (10¹⁴ n/cm²) $\Phi_{eq} [cm^{-2}]$ [M.Moll PhD Thesis] I. Mandić et al., Nucl. Instr. And Meth. A 603 (2009) 263-267 M. Moll, PHD thesis, DESY-THESIS-1999-040

- we know how to build and operate tracking detectors up to radiation levels exceeding $\Phi_{eq} \sim 10^{16} n_{eq}/cm^2$
 - → maximum radiation levels for tracking detectors at High Luminosity LHC (HL-LHC)

What is "extreme" fluence

- Future Circular Collider FCC 100 km ring near CERN
 - start as an electron-positron Higgs factory
 - ➔ radiation levels not higher than HL-LHC
 - later stage: **proton-proton** collider at the highest achievable energy": **FCC-hh** (10.1140/epjst/e2019-900087-0)
 - ➔ radiation damage will be one of the major problems
 - FCC-hh maximal fluences beyond 10¹⁷ n_{eq}/cm² might even go up to 10¹⁸ n_{eq}/cm² in the tracker
 - \rightarrow fluences above 10¹⁷ n_{eq}/cm² are the present extreme

• at $L_{int} = 30 \text{ ab}^{-1}$ vertex detector at r = 2.5 cm: $\Phi_{eq} \sim 6.10^{17} \text{ n}_{eq}/\text{cm}^2$

Detector performance at 1e17 and beyond

- extrapolations from low fluences don't give much hope for standard detectors at extreme fluences:
 - current: 2 mA/cm² (2 W/cm² @ 1 kV) for 300 μ m thick detector @ -20°C
 - full depletion voltage $\approx 100 \text{ kV}$

Current increase smaller

- trapping $\tau_{eff} \approx 20$ ps, collected charge maybe 400 electrons at high bias voltage
- Initial results indicate that linear extrapolations don't work

Trapping probability much smaller than expected

Detector performance at 1e17 and beyond

• thin detectors \rightarrow more charge

I. Mandić et al., 2020 JINST 15 P11018

3D trench pixel detector at 1e17 n/cm²
 → high efficiency in the test beam!

A. Lampis, 16th Pisa Meeting 2024

Detector performance at 1e17 and beyond

- some initial and promising results, but still many questions:
 - impact ionization?
 - carrier mobility at high fluence?
 - performance of wide band-gap materials , SiC, GaN, diamond?
 -
 -

→ FCC-hh in distant future but many years of studies needed to develop detectors

- better start now (development of detectors for HL-LHC was going on for 20 years)
- EURO-LABS has started:

→ TA for irradiations to extreme fluences in the TRIGA reactor part of WP4 program

EUR

- well known irradiation facility
 - → used for radiation hardness studies of solid state detectors for particle physics experiments for ~ 30 years
 - → several thousands of samples for tracking detector development irradiated
- → WP4 Transnational access to Research Infrastructures for HEP Detectors <u>https://web.infn.it/EURO-LABS/wp4-ta-for-detectors/</u>

• neutron spectra in different irradiation channels

K. Ambrožič et al., Applied Radiation and Isotopes 130 (2017) 483-488

More info about irradiation channels: <u>https://ric.ijs.si/en/info-za-uporabnike/lastnosti-obsevalnih-kanalov</u>

TRIGA Mark II reactor

 samples are inserted to the core through vertical channels from the reactor platform

• core (under ~ 5 m of water)

Ljubljana, Slovenia

TIC channel $\varphi_{max}^{=}$ 3.7 ·10¹² n_{eq}cm⁻² s⁻¹

Chanel F19 $\varphi_{max}^{=}$ 1.6·10¹² n_{eq}cm⁻²s⁻¹

Central channel \rightarrow highest flux $\varphi_{max} = 6.7 \cdot 10^{12} n_{eq} \text{ cm}^{-2} \text{s}^{-1}$

EUR

- horizontal channel for larger objects
- $\varphi_{max}^{=}$ 4.8 ·10¹¹ n_{eq} cm⁻²s⁻¹

• sample inserted next to the core from the side

EURO LABORITORIES FUROPERN LABORITORIES FOR ACCELERATOR BASED SCIENCES

- **HL-LHC**, fluneces up to $nx10^{16} n_{eq}/cm^2$
 - typical irradiation few tens of minutes
 - usually several fluences requested, irradiation campaign for individual user few hours
 - ightarrow about 2000 irradiations were done in the last 10 years
 - still many irradiations in this fluence range going on, supported by EURO-LABS

- FCC_{hh} up to $10^{18} n_{eq}/cm^2$
 - \rightarrow 10¹⁸ n_{eq}/cm² reached in 40 hours in the Central Channel (CC) (flux 6.7e12 n_{eq}/cm²/s)
 - → reactor operates in usual working hours: one week of reactor time needed for single irradiation campaign
 - → reactor used by many users → only few (two, three) irradiations to $10^{18} n_{eq}/cm^2$ possible per year

→ collect samples from several users and irradiate together

Irradiation to Extreme Fluences

• a week (40 h) of reactor time for extreme fluences was booked from **19th to 23rd of August 2024**

→ irradiation campaign advertised to the DRD3 collaboration

- use three irradiation channels in parallel
 - in 40 hours following fluences are reached
 - in CC: 1e18 n_{eq}/cm^2
 - in TIC: 5.2e17 n_{eq} /cm²
 - in F19: 2.3e17 n_{eq}/cm²
- samples from various groups joined together

 only one container can be irradiated up to 1e18 in 40 hours
- small samples! to fit into cylinder with diameter 2.4 cm, 10 cm long
- only bare chips (no PCBs, connectors etc...)

2.4 cm diameter10 cm long

Received samples from 12 groups:

	Group	Sample	Fluences (x1e17)		
			2.3	5	10
1	Carlton, Canada	GaN	Х		х
2	IMECAS, China	Si (3D)	Х	х	х
3	Vilnius	SiGe, Si, Sapphire	Х	х	х
4	Helsinki	CdTe, AIN	Х		
5	CERN	Si, SiC	Х	х	х
6	Heidelberg	Si			х
7	Cagliari	Si (3D)		х	х
8	Vienna	SiC			х
9	RD50-CMOS	Si (CMOS)			х
10	Torino	Si (LGAD)	х	х	х
11	ATLAS strips	Si (Planar)	х	х	х
12	Hamburg	Si blocks	Х	Х	х

Irradiation to Extreme Fluences

- not much experience with 40 hours irradiation (<u>G. Gorine et al., IEEE TNS, VOL. 65, 2018, p1583</u>)
- 40 hours in CC: 1e18 n_{eq}/cm² neutrons + ~ 10 MGy TID from gamma rays
- samples wrapped in kapton (plastic zip bags not ok)

Samples for 1e18

into container C

• wrap also in aluminium foil if kapton packages fall apart

- worries before irradiation:
 - will marks be visible after 1e18 and 10 MGy?
 - ➔ colleagues from CERN IRRAD said yes, they have experience with 10 MGy
 - radioactivity → when will it be possible to send samples back to labs?

Irradiation to Extreme Fluences

- irradiation from Monday to Friday (19-23/8/2024)
- containers lifted out of irradiation channels Monday (26th)
 → radioactivity: ~ mSv/h at ~ 1 m
- store in the "hot chamber" for another 3 weeks
- open the containers end of September:
 - 1e18 samples \rightarrow marks well visible:

- glue falls off
- slightly radioactive → unwrap with care

→ beginning of October 2024: radioactivity of all but one set below the exemption level!
→ finished sending samples back to labs last week

Summary

- at future hadron colliders particle detectors will be exposed to radiation levels up to 10¹⁸ n/cm²
 - present detectors can't survive such high radiation levels
- large number of irradiation tests will be needed to develop detectors for such environment
- irradiations to high fluences are a challenge
 - irradiation time
 - sample preparation
 - radioactivity and shipments of irradiated samples
- first joint irradiation campaign to extreme fluences at TRIGA reactor supported by EURO-LABS
 - lot of useful experience on how to organize such irraidation
 - various types of samples irradiated
 - hope for interesting results in presentations and publications (with acknowledgment to EURO-LABS)
- next irradiation to extreme fluences planned for 2025
 - expecting samples from many institutes developing detectors for extreme fluences

EUPA