EURO-LABS 3rd Annual Meeting

Contribution ID: 136

Type: Poster

First laser-spectroscopy measurements across N = 32 in the calcium isotopic chain

Over a decade ago, the first experimental evidence for the N=32 sub shell closure in the calcium isotopic chain emerged [1,2]. Subsequent experimental and theoretical investigations have confirmed this finding. However, in laser spectroscopy measurements extending up to 52 Ca (N=32), no indications of this shell gap were apparent [3]. Crossing the shell gap with laser spectroscopy setups has proved difficult due to the simultaneous requirement of a sensitivity of approximately 10 ions/s and a measurement uncertainty on the order of MHz.

This contribution presents the first laser spectroscopy measurements of 53,54 Ca, facilitated by an extension of the collinear laser spectroscopy technique employed at the COLLAPS setup at ISOLDE/CERN. This technique, termed as *radioactive detection after optical pumping and state selective charge exchange* (ROC), combines the high sensitivity of a particle detection scheme with the high resolution of low-power, continuous wave lasers utilized in a collinear geometry. The methodology of this technique will be explained, followed by the presentation and discussion of preliminary values for the charge radius and magnetic dipole moment of 53,54 Ca in the context of the robustness of the N=32 sub shell closure.

- [1] Wienholtz, F. et al. Nature vol. 498, 346-349 (2013)
- [2] Steppenbeck, D. et al. Nature vol. 502, 207-210 (2013)
- [3] R.F. Garcia Ruiz et al, Nature Physics vol. 12, 594-598 (2016)

Work-package

WP2 - RIs for Nuclear Physics

Facility identifier

ISOLDE

Authors: MATTHEWS, Edward Noel (Technische Universitaet Darmstadt (DE) and EP-SME-IS); LELLINGER, Tim Enrico (CERN, Technische Universitaet Darmstadt (DE))

Session Classification: Cocktail - Poster session