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Challenges in high-precision determinations 
of CKM matrix elements using lattice QCD 

Antonin Portelli — 21/02/2024 
CERN TH Colloquium
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General context



Flavour structure of the Standard Model

• The flavour structure of the SM is largely unexplained 
• CKM matrix elements are inferred from measurements 
• Non-unitary of the CKM matrix is still a good target for 

searching new physics
3



• Leptonic decays: W-boson quark pair annihilation 

• Radiation inclusive decay rate

CKM matrix elements from leptonic decays

4

P+ (q̄1q2)

ℓ+

νℓ

∝ |Vq1q2
|2

Γ(P+ → ℓ+νℓ[γ]) =
G2

F

8π
f2
P m2

ℓ MP (1 −
m2

ℓ

M2
P )

2

|Vq1q2
|2 (1 + δRP)



CKM matrix elements from leptonic decays

5

Γ(P+ → ℓ+νℓ[γ]) =
G2

F

8π
f2
P m2

ℓ MP (1 −
m2

ℓ

M2
P )

2

(1 + δIB) |Vq1q2
|2

• from experiment/PDG 

• isospin-symmetric QCD component 

• isospin-breaking QCD+QED component



• Semi-leptonic decays: flavour changing charged current  

• Radiation inclusive decay rate

CKM matrix elements from semi-leptonic decays

6

P+ (q̄1qs)

ℓ+

νℓ ∝ |Vq1q2
|2

Γ(P+ → Q0ℓ+νℓ[γ]) = G2
F |Vq1q2

|2 ℐ(1 + δIB)

Q0 (q̄2qs)



 &  anomalies|Vus | |Vud |

Significant tensions from 

  decays  measurements & radiative corrections inputβ |Vud |

7

Y. Aoki et al. FLAG Review 2021 2111.09849

[3]

[30]

Figure 11: Same as Fig. 10 but with |Vus|/|Vud| through Eq. (71).

|Vu|
2 = 0.9816(64), which deviates from unity at the level of ' 2.9 standard deviations. Still,

it is fair to say that at this level the Standard Model passes a nontrivial test that exclusively
involves lattice data and well-established kaon decay branching ratios.

The test sharpens considerably by combining the lattice results for f+(0) with the �
decay value of |Vud|: f+(0) in Eq. (77) and the PDG estimate of |Vud| in Eq. (72) lead to
|Vu|

2 = 0.99794(37), which highlights a ' 5.6 � deviation with unitarity. A lower tension
at the three-� level is suggested either from fK±/f⇡± in Eq. (82) (|Vu|

2 = 0.99882(36)) or
|Vud| in Eq. (73) with the updated nuclear corrections (|Vu|

2 = 0.99800(65)). Unitarity is
fulfilled with fK±/f⇡± and |Vud| (73) (|Vu|

2 = 0.99888(67)). Note that, when the PDG value
of |Vud| (72) is employed, the uncertainties on |Vu|

2 coming from the errors of |Vud| and |Vus|

are of similar magnitude with each other.
The situation is similar for Nf = 2 + 1: with the lattice data alone one has |Vu|

2 =
0.9832(89), which deviates from unity at the level of ' 1.9 standard deviations. The lattice
results for f+(0) in Eqs. (78) with the PDG value of |Vud| (72) lead to |Vu|

2 = 0.99816(43),
implying a ' 4.3� deviation from unitarity, whereas the deviation is reduced to 2.3 – 2.6�
with fK±/f⇡± in Eq. (83) (|Vu|

2 = 0.99896(45)) and |Vud| in Eq. (73) (|Vu|
2 = 0.99822(69)).

For the analysis corresponding to Nf = 2 the reader should refer to the 2016 edition [56].

4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in Eq. (70) and the unitarity condition Eq. (85) then reduce the four
quantities |Vud|, |Vus|, f+(0), fK±/f⇡± to a single unknown: any one of these determines the
other three within narrow uncertainties.

As Fig. 12 shows, the results obtained for |Vus| and |Vud| from the data on fK±/f⇡±

15 Updated Feb. 2023

FLAG 2021 + web update

χPT IB corrections Lattice IB corrections



 accuracyfD/fDs

8

 FLAG average               

0.1% accuracy, however QED corrections are not known…

Nf = 2 + 1 + 1 fDs
/fD = 1.1783(0.0016)



General issues regarding isospin breaking effects

• Isospin-breaking (IB) effects are a small perturbation of 
hadronic quantities, generally  

• Two components required 
1) distinct up and down masses 
2) electromagnetic interactions between quarks 

• Required for precision hadronic physics 

• Including QED is challenging. Computing IB effects might 
not be required for lower precision targets.

𝒪(1%)

9



Conventions defining pure QCD

• For an observable  one ideally wants an expansion 
 
 
 
 

• A complete set of hadron masses defines  unambiguously 

• The separation in 3 contributions requires additional 
conditions, and is scheme-dependent

X

Xϕ

10

Xϕ = X̄ + Xγ + XSU(2)

iso-symmetric
EM isospin-breaking
strong isospin-breaking



Radiative corrections to leptonic decays
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Lattice QCD

12
Image credit: Schuiten & Peeters, 1985, Casterman

• Quantum field theory on a discrete 
Euclidean space-time 

• Enable Monte-Carlo estimations of 
the path integral 

• It is free from weak-coupling 
approximations 

• Systematic way to compute non-
perturbative hadronic quantities



Our “particle accelerator”

13

Edinburgh lattice team & Tursa, July 2022



RBC/UKQCD physical point ensemble C0

• Möbius domain-wall fermions 

• 2+1 flavours at the physical point 

•  and  
 

• 60 independent configurations 

• 96 measurements per configuration

a ≃ 0.12 fm L3 × T = 483 × 96

14

RBC-UKQCD PRD 93(7), 074505 (2016)



Energies and matrix elements extracted from the large-time 
behaviour of Euclidean correlation functions 

Euclidean time version of LSZ formula

Euclidean correlation functions

15

C(0)
Pℓ (t, tℓ) =

ZP e−mPt e−ωℓtℓ e−ωνtℓ

8mP ωℓ ων
𝒜(0)

P ℒ + ⋯

J
H
E
P
0
2
(
2
0
2
3
)
2
4
2

P+

ℓ+

νℓ

q1

q2

Figure 1. Feynman diagram of the tree-level contribution to the weak decay of a positive
pseudoscalar meson P+ ∈ {π+,K+} into a lepton-neutrino pair. The double-square vertex represents
the effective weak Hamiltonian eq. (3.9).

with q1 being a u-type quark and q2 a d-type quark and JρH and JρL denoting the weak
(V − A) hadronic and leptonic currents, respectively. The Feynman diagram associated
with this tree-level term is represented by figure 1.

When including QED at O(αem), the UV corrections to matrix elements of the local
operator OW differ from those of the Standard Model and a matching between the two
theories is therefore needed. This is usually performed in the so-called W -regularization [26,
27], and we refer to refs. [8, 10] for detailed discussions on the argument. After the inclusion
of QCD and QED at O(αem) and assuming that chiral symmetry is preserved, the effective
Hamiltonian reads2

HW = GF√
2
V ∗
q1q2

(
Z0 +

αem
4π δZ

)
OW . (3.11)

Here Z0 is the non-perturbative QCD renormalization constant of the operator OW . The
quantity δZ encodes instead the short-distance matching between the effective theory in
the W -regularization and the Standard Model, as well as the electromagnetic corrections to
the matching of the four-fermion operator OW renormalized non-perturbatively in a given
scheme to the W -regularization one. If OW is a lattice operator and the regularization
used for the fermionic action introduces an explicit chiral symmetry breaking, then the
operator OW undergoes an additive renormalization due to the mixing with other lattice
operators with different chirality and the mixing pattern would be more complicated than
that in eq. (3.11) (see e.g. refs. [8, 10]). In the lattice calculation presented in this work,
however, chiral fermions are employed and therefore in the following we will consider the
operator OW renormalizing multiplicatively as in eq. (3.11), with Z0 = ZV = ZA. Moreover,
if a mass-independent scheme is adopted to renormalize the four-fermion operator, then the
quantities Z0 and δZ will be the same regardless of the masses of the particles involved in the
process. As a consequence, the contribution of the electromagnetic corrections proportional
to δZ will cancel in the calculation of our quantity of interest, δRKπ = δRK − δRπ,
entering eq. (1.3).

In the full theory the (IR regulated) virtual decay rate can be written as

Γ0(L) = K |MP |2 , (3.12)

where K is a factor containing the electro-weak coupling, the CKM matrix elements
and the integration over the two-body phase space, while |MP |2 =

∑
r,s |Mrs

P |2 is the
2When including electromagnetic corrections at O(αem), the Fermi constant GF has to be defined

accordingly. This is conventionally obtained from the muon lifetime including one-loop electromagnetic
corrections and reads GF = 1.16634 × 10−5 GeV−2 [28, 29].

– 11 –

−t 0 tℓ



Quark-connected isospin corrections
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(d)

P+

ℓ+
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(e)

P+
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(g)
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q1
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(h)

Figure 2. Quark-connected Feynman diagrams contributing to the leading IB corrections to the
weak decay. The wiggly lines correspond to photons, and the diamond-shaped vertices are scalar
insertions.

with eq1 = +2/3|e| and eq2 = −1/3|e|, and Aφ
P the axial matrix element evaluated in

the full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD
theory, σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude
factorizes into a hadronic and a leptonic part, we refer to these contributions as “factorizable”.
The relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e)
and 3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”
corrections to the matrix element where a photon is exchanged between a quark and the
charged lepton (eℓ = −|e|). These are given by

[
δ ĎMrs

P (pℓ)
]nf =

[1
2eℓ

∑

q
eq

∂2

∂eq∂eℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third
term in eq. (3.28) consists in the O(e2ℓ ) contribution of the lepton self-energy in figure 2(h),
which is proportional to A(0)

P with a factor that can be computed analytically in perturbation
theory,

[
δ ĎMrs

P (pℓ)
]ℓ =

[1
2e

2
ℓ
∂2

∂e2ℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

= −A(0)
P

[1
2e

2
ℓ
∂2

∂e2ℓ

]
Lrs
φ (pℓ)

∣∣∣∣
σ(0)

, (3.31)

with Lrs
φ (pℓ) = ⟨ℓ+, r,pℓ; νℓ, s,pν |J0

L|0⟩φ. This perturbative correction, however, cancels in
the difference [Γ0(L) − Γ(2)

0 (L)] in eq. (3.2) and therefore can be neglected in practice in
the calculation. Of course, the lepton self-energy must be included in Γpert

P (mγ).
Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in
treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting
the diagrams in figure 3. The deviations from this approximation are expected to be small,

– 14 –



Quark-disconnected isospin corrections
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Figure 3. Quark-disconnected Feynman diagrams contributing to the leading IB corrections to the
weak decay.

and we assign an associated systematic uncertainty in our final prediction. We are currently
working on overcoming this approximation and the progress of our preliminary study has
been reported in ref. [30].

3.2 Extracting matrix elements from Euclidean correlation functions

The IB corrections to meson masses, δmP , and to the decay amplitude, δAP , which are
needed to compute δRlatt

P in eq. (3.24), can be obtained from the study of the large time
behaviour of suitably defined Euclidean correlation functions. Here the correlation functions
are studied in the continuum and in a volume with infinite temporal extent. The subtraction
of the effects due to the finite spatial extent of the lattice, L, are discussed later in section 3.3,
while finite-time corrections to these quantities will be addressed in section 4.3, together
with the details on the lattice implementation of the correlation functions.

Tree-level correlation function: we start by defining the tree-level correlation function
for the decay P+ → ℓ+νℓ, with the aim of extracting the tree-level matrix element A(0)

P

defined in eq. (3.18). As discussed in section 3.1, in the absence of QED the matrix element
for the operator OW is factorisable into a hadronic and a leptonic part. As a consequence,
we can extract the hadronic matrix element A(0)

P from a pure QCD two-point correlation
function without the need of including leptons in the calculation. Let φ†P (x) = q̄1(x)γ5q2(x)
be the interpolating operator for the pseudoscalar meson P+ and define the Euclidean
correlation functions

CPA(t) ≡
∫

d3x ⟨0|T
[
A0(t,x)φ†P (0)

]
|0⟩ , CPP(t) ≡

∫
d3x ⟨0|T

[
φP (t,x)φ†P (0)

]
|0⟩ , (3.32)

with A0(x) = q̄2(x)γ0γ5q1(x) the temporal component of the hadronic axial current and
the meson being projected on zero spatial momentum. For simplicity, we use translational
invariance to create the meson at the origin. In practice, lattice correlators have been
computed for several positions xP = (tP ,xP ) and then shifted and averaged over all the
volume to improve the statistical precision (see section 4.3). Note that these are generic
correlation functions evaluated at a given point σ. Fixing t > 0, the correlation functions

– 15 –

Significant numerical challenge 
No computed here (partially quenched calculation)



Data analysis

•  is predicted from 
fitting 25 correlators 

• Contains fac. and non-
fact. corrections, and scale 
setting 

• Genetic selection of 78125 
best AIC fits 

• Final error budget from 
AIC-weighted histogram

δRKπ
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Figure 9. Histogram displaying the distribution of δRlatt
Kπ . The blue and green error bands are the

statistical and fit systematic errors, respectively.

Finally, we also obtain the following ratios
[M(0)

m(0)
Ω

]2
=
(
0.006530 (4), 0.08761 (3), 0.08761 (3)

)
, (5.13)

[MQCD

mQCD
Ω

]2
=
(
0.006530 (4), 0.08653 (2), 0.08869 (3)

)
, (5.14)

[Nφ

mφ
Ω

]2
=
(
0.006530 (4), −0.00464 (2), 0.08434 (2)

)
. (5.15)

Assuming m(0)
Ω = mφ

Ω, we can form the ratio in eq. (5.13) using the iso-QCD meson masses
in the GRS scheme quoted in ref. [8],

[M(0)

m(0)
Ω

]2

GRS
=
(
0.00652 (2), 0.08746 (4), 0.08746 (4)

)
. (5.16)

The pion component agrees between the two schemes, the difference in the kaon part is
more significant, but represents only a per-mille relative difference, which as we will see in
section 6 is well covered by our systematic errors.

5.3 Estimation of model uncertainties

As described in section 5.1, the fit-scan procedure selects a set of fit ranges and their
associated AIC weights from each of the seven analyses. We choose to consider the five
best fits from each analysis, thus obtaining a total of nfit = 78125 determinations of the
fit parameters for each bootstrap sample. We can then combine the fit parameters, tune

– 35 –

δRKπ = δRK − δRπ

(IB corrections to  and   
 leptonic decay rate ratio)

K π



Final result

• Error dominated by finite-volume uncertainties 
(more about that shortly) 

• First need better control on volume and  
Then experimental error dominates

fK /fπ

19

δRKπ = − 0.0086(3)stat.(+11
−4 )fit

(5)disc.(5)quench.(39)vol.

|Vus | / |Vud | = 0.23154(28)exp.(15)δRKπ
(45)δRKπ,vol.(65)fK /fπ



Comparison to other determinations

20

Results for 
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• Our recent result is compatible with previous 
lattice calculation (RM123S) and with PT 

• The error is dominated by a large systematic 
uncertainty related to finite-volume effects
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Solid evidence that          can be computed from first principles non-perturbatively on the lattice!
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<latexit sha1_base64="wFcpH+YB2zSmyhqz+7BZtasD2s8=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5CktbG7ohvBTRX7gCaEyWTaDp08mJkINfRL3LhQxK2f4s6/cfoQVPTAhcM593LvPUHKqJCm+aEVVlbX1jeKm6Wt7Z3dsr633xFJxjFp44QlvBcgQRiNSVtSyUgv5QRFASPdYHwx87t3hAuaxLdykhIvQsOYDihGUkm+XnZDwiSCN35+5aZ06usV0zDtWsOxoWnYdsNxThWp2XWzWoWWYc5RAUu0fP3dDROcRSSWmCEh+paZSi9HXFLMyLTkZoKkCI/RkPQVjVFEhJfPD5/CY6WEcJBwVbGEc/X7RI4iISZRoDojJEfitzcT//L6mRyceTmN00ySGC8WDTIGZQJnKcCQcoIlmyiCMKfqVohHiCMsVVYlFcLXp/B/0rENq25Ur2uV5vkyjiI4BEfgBFjAAU1wCVqgDTDIwAN4As/avfaovWivi9aCtpw5AD+gvX0C38STQg==</latexit>

�RK⇡

Matteo Di Carlo Lattice 2023



Finite-volume effects in QED

Relativistic, model-independent determination of electromagnetic finite-size
effects beyond the pointlike approximation

M. Di Carlo , M. T. Hansen , and A. Portelli
School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

N. Hermansson-Truedsson *

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,
Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

(Received 18 November 2021; accepted 8 February 2022; published 27 April 2022)

We present a relativistic and model-independent method to derive structure-dependent electromagnetic
finite-size effects. This is a systematic procedure, particularly well-suited for automation, which works at
arbitrarily high orders in the large-volume expansion. Structure-dependent coefficients appear as zero-
momentum derivatives of physical form factors which can be obtained through experimental measurements
or auxiliary lattice calculations. As an application we derive the electromagnetic finite-size effects on the
pseudoscalar meson mass and leptonic decay amplitude, through orders Oð1=L3Þ and Oð1=L2Þ,
respectively. The structure dependence appears at this order through the meson charge radius and the
real radiative leptonic amplitude, which are known experimentally.

DOI: 10.1103/PhysRevD.105.074509

I. INTRODUCTION

Lattice quantum chromodynamics (QCD) makes it
possible to perform precision tests of the Standard
Model (SM) using observables for which nonperturbative
physics plays an important role. In recent years, for
example, it has been used to determine hadronic corrections
to the muon anomalous magnetic moment [1] and, in the
flavor physics sector, decay rates needed for the extraction
of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
[2], in particular jVusj and jVudj, including radiative
corrections [3–6].
Among other sources of systematic uncertainty in lattice

QCD calculations, it is important to quantify the role of the
finite volume (FV). This is particularly important when
quantum electrodynamics (QED) is included, since the
long-range nature of the interaction leads to powerlike
rather than exponentially suppressed finite-volume effects
(FVEs), even in simple quantities such as masses and
leptonic decay rates. The powerlike FVEs can be estimated
numerically either by fitting functional forms to simulation

results at various volumes or by deriving the volume
scaling using analytic techniques; see Refs. [7–11].
In order to reach subpercent precision in lattice calcu-

lations, isospin breaking (IB) effects are essential. This
means including strong effects coming from the quark mass
difference mu −md ≠ 0 as well as electromagnetic (EM)
effects by considering QCD coupled to QED. The latter
effects are particularly complicated for several reasons.
Because QED does not have a mass gap, zero-momentum
photon modes lead to new infrared divergences and diffi-
culties in defining charged particles in a FV. The problem
can also be understood via Gauss’ law, which predicts a flux
through a surface containing a charged particle that contra-
dicts naive periodic boundary conditions [7,10,12].
However, it is still possible to define QED in a finite volume
in ways that remove or modify the problematic zero modes.
Many prescriptions have been defined, including QEDL
[12], the most commonly used approach nowadays, but also
QEDC [13–17], QEDM [18,19], QEDTL [20,21], and the
infinite-volume reconstruction method [22–24].
In QEDL the photon zero modes are subtracted on each

energy slice, providing a straightforward regularization of
zero-mode singularities in finite-volume QED. This
approach breaks the locality of the theory but still admits
a transfer matrix, preserving its quantum mechanical
interpretation [7,10]. In this paper, we consider QEDL
on a spacetime with an infinite time direction, but compact,
periodic space directions of length L. We expect that the
formalism developed here can be generalized to different
formulations of finite-volume QED.

*Corresponding author.
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Photon zero-modes

• Photon Green function equation (Feynman gauge) 

                              

• Infinite volume:  
      Laplacian spectrum non-zero a.e., potentially invertible 

• Periodic finite-volume: 
      Isolated zero-mode, non-invertible 

−ΔGμν(x) = δμνδ(x)

22
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Photon zero-modes

• Finite volume QED loop integrals undefined 
 

       ,   with    

  possibly divergent       isolated   term 
      IR divergences 

•  : remove 3D zero-modes from photon field

∫
d3k

(2π)3

f(k)
k2

⟼
1
L3 ∑

k

f(k)
k2

k =
2π
L

n

f(0)/0

QEDL
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Hayakawa & Uno, PTP 120 413-441 (2008)
BMWc Science 347 1452-1455 (2015)



Non-localities

•  non-local in space (but local in time) 

• Potential issues with EFTs and renormalisation 

• Alternatives known,  most popular choice so far

QEDL

QEDL

24

Endres,  et al. PRL 117(7) 072002 (2016)

Lucini,  et al. JHEP02 76 (2016)

Feng & Jin PRD 100(9), 094509 (2019)
Christ et al. PRD 108(1), 014501 (2023)

Massive photons

C* boundary conditions

Infinite-volume reconstruction



Zero-mode regularisation

• In  

                        

• Finite-volume effects 

                    

• Soft-photon singularities: power law in  asymptotics

QEDL

∫
d3k

(2π)3

f(k)
k2

⟼
1
L3 ∑

k≠0

f(k)
k2

Δ′ k
f(k)
k2

=
1
L3 ∑

k≠0

− ∫
d3k

(2π)3

f(k)
k2

1/L
25



Finite-volume expansion

• Expansion in inverse powers of , with coefficients 
 
 

• For example, scalar  self-energy FV effects

L

QEDL

26

cj(v) = Δ′ n [ 1
|n |j (1 − v ⋅ n̂) ] n̂ = n/ |n |

v : velocity

ΔFVω(p)2 = mq2 [ 1
γ( |v | )

c2(v)
4π2mL

+
c1

2π(mL)2
+ ⋯]

v =
p

p2 + m2

Δ′ n = (∑n≠0 − ∫ d3n)

Davoudi, AP,  et al. PRD99(3), 034510 (2019)



Pseudo-scalar mass corrections in QEDL

•  &  terms are universal 

•  term depends on radius and branch-cut contribution 

•  is purely non-local 

• Higher orders depend on polarisabilities, etc… 

1/L 1/L2

1/L3

1/L3
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where the self-contracted kernel defines the Oðe2Þ self-
energy function

ð48Þ

Performing the summation in Eq. (47), one obtains

C∞
2 ðpÞ ¼

Z2
P;0

p2 þm2
P;0 − Σ0ðp2Þ − Σðp2Þ

: ð49Þ

The value of Σð−m2
PÞ and its derivative is specified by the

chosen scheme for defining the e → 0 limit of QCDþ QED.
The full QCDþ QED mass is given by solving

p2 þm2
P;0 − Σ0ðp2Þ − Σðp2Þjp2¼−m2

P
¼ 0; ð50Þ

which reduces to

Δm2
P ¼ m2

P −m2
P;0 ¼ −Σð−m2

PÞ þOðe4Þ: ð51Þ

Here we have used that Σ0ðp2Þ ¼ O½ðp2 þm2
P;0Þ2& (by

construction) and thus only contributes at Oðe4Þ.
Following Eq. (37) above, we also define

C∞
2 ðpÞ ¼ ZP ·DðpÞ · ZP; ð52Þ

where ZP is already defined in Eq. (31) and

DðpÞ ¼ Zðp2Þ
p2 þm2

P
; ð53Þ

with Zðp2Þ ¼ 1þO½ðp2 þm2
PÞ&. A particularly important

quantity in the following section will be the ratio between
operator overlaps in the QCD-only and full QCDþ QED
theories. We parametrize this via

ZP ¼ ZP;0ð1þ δZP
Þ: ð54Þ

One can readily show

δZP
¼ 1

2
½Σ0

0ð−m2
PÞ þ Σ0ð−m2

PÞ&: ð55Þ

In contrast to the pole shift, both Σ0ðp2Þ and Σðp2Þ
contribute to the overlap at the order we work.

Returning to the finite-volume system, an identical
argument can be applied to reach a finite-volume version
of Eq. (49) in which C∞

2 → CL
2 and the two self-energies on

the right-hand side both receive L dependence. As was
shown in Ref. [30], the finite-volume QCD-only self-
energy, call it ΣL

0 ðp2
0;p ¼ 0Þ, vanishes as e−mP;0L when

evaluated at p2
0 ¼ −m2

P;0. Therefore, the leading finite-
volume effects are given by the difference between the FV
and IV QED contributions:

Δm2
PðLÞ ¼ mPðLÞ2 −m2

P

¼ −½ΣLð−m2
P; 0Þ − Σð−m2

PÞ&; ð56Þ

where the second argument of ΣL indicates that we focus on
P at rest in the FV frame. The rest of this section could be
derived in an arbitrary FV frame as done in Ref. [10];
however, for the sake of simplicity we will only consider
the rest frame.
The powerlike 1=L scaling within ΣLð−m2

P; 0Þ is due
only to the fact that the spatial part of the photon
momentum k is summed over the discrete modes satisfying
the periodic boundary conditions, with k ¼ 0 removed. In
particular, one can take the IV definition of Cμν within ΣL

as the difference from the FV quantity is again exponen-
tially suppressed. One finds

Δm2
PðLÞ¼−

e2

2
lim

p2
0→−m2

P

Δ0
k

Z
dk0
2π

Cμμðp;k;−kÞ
k2

!!!!
p¼0

; ð57Þ

where Δ0
k is defined in Eq. (4) above. This implies that the

FV effects on the mass, including structure-dependent
contributions, can be related to the physical properties of
the Compton scattering amplitude. In particular, it is clear
that the finite-size effects on the physical mass cannot
depend on the arbitrary choice of the interpolating operator
ϕ, and we expect any term depending on ϕ to cancel in the
final result. To obtain the large-volume expansion of
Eq. (57), one can use the summation formulas derived in
the previous section. This requires one to discuss the
reduction of the Compton kernel which is the purpose of
the next section.

2. Irreducible electromagnetic vertex functions

It is now useful to decompose the Compton kernel in
irreducible diagrams as

ð58Þ
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where the second argument of ΣL indicates that we focus on
P at rest in the FV frame. The rest of this section could be
derived in an arbitrary FV frame as done in Ref. [10];
however, for the sake of simplicity we will only consider
the rest frame.
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P; 0Þ is due
only to the fact that the spatial part of the photon
momentum k is summed over the discrete modes satisfying
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as the difference from the FV quantity is again exponen-
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where Δ0
k is defined in Eq. (4) above. This implies that the

FV effects on the mass, including structure-dependent
contributions, can be related to the physical properties of
the Compton scattering amplitude. In particular, it is clear
that the finite-size effects on the physical mass cannot
depend on the arbitrary choice of the interpolating operator
ϕ, and we expect any term depending on ϕ to cancel in the
final result. To obtain the large-volume expansion of
Eq. (57), one can use the summation formulas derived in
the previous section. This requires one to discuss the
reduction of the Compton kernel which is the purpose of
the next section.

2. Irreducible electromagnetic vertex functions

It is now useful to decompose the Compton kernel in
irreducible diagrams as
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Δm2
P(L) = e2m2

P { c2

4π2mPL
+

c1

2π(mPL)2
−

c0⟨r2
P⟩

3mPL3
−

c0𝒞
(mPL)3

+ 𝒪 [ 1
(mPL)4 ]}

Di Carlo, AP,  et al. PRD 105(7), 074509 (2022)



Leptonic decay radiative corrections in QEDL

28

zn ¼ fn ¼ 0 without loss of generality. However, we found
that keeping those terms and expecting their cancellation is
a useful way of controlling the correctness of the final
result.
All the Oðe2Þ corrections other than the self-energy are

simply obtained by amputating the P− propagator and wave
function in Eq. (115) from the correlation function
Crs
W;1ðp; plÞ − Crs

W;selfðp; plÞ. In summary, all the ampli-
tudes to consider are listed in Fig. 2, using a notation
matching Ref. [9].
Let us conclude this part by relating all the diagrams to

the FV decay width ΓðnÞ
0 ðLÞ in Eq. (104). The decay

rate is related to the squared matrix element

jMj2 ¼
X

r;s

jMrsj2

¼
X

r;s

jMrs
0 j2 þ

X

r;s

½Mrs
1 ðMrs

0 Þ† þH:c:& þOðe4Þ

¼ jðaÞj2 þ 2½ðbÞ þ ðcÞ þ ðdÞ þ ðeÞ þ ðfÞ þ ðgÞ&× ðaÞ†

þOðe4Þ; ð138Þ

and therefore the electromagnetic finite-size effects ΔjMj2
are given by the following sum-integral differences:

ΔjMj2¼2Δ½ðbÞþðcÞþðdÞþðeÞþðfÞþðgÞ&×ðaÞ†: ð139Þ

Finally, the quantity YðnÞðLÞ defined in Eq. (108) can be
obtained by adding the universal IV contribution evaluated
in the pointlike theory to the FV corrections computed up to
terms of Oð1=LnÞ, namely

YðnÞðLÞ ¼ ΔYðnÞðL; λÞ þ Yuni
IV ðλÞ: ð140Þ

The infinite volume contribution Yuni
IV ðλÞ computed in the

W-regularization scheme can be found in Ref. [9] and is
reported in Eq. (180) below. Here λ plays the role of a
photon mass to regulate in the IR the IV integrals.
The quantity Yuni

IV ðλÞ cancels the dependence on λ in
ΔYðnÞðL; λÞ, thus leaving the size L as the IR regulator
of the FV quantity YðnÞðLÞ. The FV correction ΔYðnÞðL; λÞ
can then be expressed in terms of ΔjMj2 as

ΔYðnÞðL; λÞ ¼
!
2
α
4π

"−1 ΔjMj2

jM0j2
; ð141Þ

with jM0j2 ¼
P

r;s jMrs
0 j2 ¼ 4m2

lm
2
Pð1 − r2lÞf2P.

2. The irreducible weak vertex functions

We must now discuss the various irreducible vertex
functions entering into the calculation extending what was
done in Sec. III A 2, which follows a procedure similar to
the one outlined in the appendix of Ref. [9]. Here we extend
the calculation by including higher order terms in the
photon momentum k that are relevant for the 1=L2 FV
corrections.
(a) Electromagnetic vertices: Here we use the general

off-shell definition for the electromagnetic vertex Γμðp; kÞ
introduced above in Eq. (61). Applying simple power-
counting arguments to the diagram ðbÞ þ ðcÞ, where the
vertex Γμνðp; k;−kÞ appears, we deduce that only terms of
Oð1Þ in the photon momentum contribute to the FV
corrections at Oð1=L2Þ. Therefore we can use directly
the expression in Eq. (67) obtained from the WTI up
to OðkÞ.
(b) Weak vertex: The off-shell weak vertex WρðpÞ for a

pseudoscalar of incoming momentum p has been intro-
duced in Eq. (122) above. It is obtained from the ampu-
tation of the correlation function Cρ

WðpÞ in Eq. (121),
namely

WρðpÞ ¼ Z−1
P DðpÞ−1Cρ

WðpÞ ¼ −pρFWðp2Þ: ð142Þ

In QCD and on-shell it reduces toWρðpÞ ¼ −pρfP, as in a
pointlike theory.
(c) Weak vertexþ onephoton: The irreducible kernel

W1 in Eq. (123), for a pseudoscalar and photon of incoming
respective momenta p and k, is defined in terms of the
correlation function

Cρμ
W ðp; kÞ ¼ i

Z
d4z d4x eipzþikx

× h0jT½JρWð0ÞJμðxÞϕ†ðzÞ&j0i: ð143Þ

When evaluated on-shell, this is strictly related to the
amplitude of radiative decays P → lνγ' that was studied in
e.g. Refs. [5,34]. The weak vertex can be defined by

FIG. 2. The various diagrams contributing to the leptonic decay width at order Oðe2Þ. The labeling (a)–(g) of the diagrams has been
chosen to match the one used in Ref. [9].
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Γ(n)
0 (L) = Γtree

0 [1 + 2
α
4π

Y (n)(L)] + 𝒪 ( 1
Ln+1 )

Y (2)(L) =
3
4

+ 4 log ( mℓ

mW ) + 2 log ( mWL
4π ) +

c3 − 2 (c3(vℓ) − B1(vℓ))
2π

−

−2 A1(vℓ)[log ( mPL
2π ) + log ( mℓL

2π ) − 1] −
1

mPL [ (1 + r2
ℓ)2 c2 − 4 r2

ℓ c2(vℓ)
1 − r4

ℓ ]+

+
1

(mPL)2 [−
FP

A

fP

4π mP [(1 + r2
ℓ)2 c1 − 4 r2

ℓ c1(vℓ)]
1 − r4

ℓ
+

8π [(1 + r2
ℓ) c1 − 2 c1(vℓ)]

(1 − r4
ℓ) ]

Di Carlo, AP,  et al. PRD 105(7), 074509 (2022)



Leptonic decay radiative corrections in QEDL

• log &  terms universal 

•  depends on real radiation form factor 

1/L

1/L2 FA

29

Y (2)(L) =
3
4

+ 4 log ( mℓ

mW ) + 2 log ( mWL
4π ) +

c3 − 2 (c3(vℓ) − B1(vℓ))
2π

−

−2 A1(vℓ)[log ( mPL
2π ) + log ( mℓL

2π ) − 1] −
1

mPL [ (1 + r2
ℓ)2 c2 − 4 r2

ℓ c2(vℓ)
1 − r4

ℓ ]+

+
1

(mPL)2 [−
FP

A

fP

4π mP [(1 + r2
ℓ)2 c1 − 4 r2

ℓ c1(vℓ)]
1 − r4

ℓ
+

8π [(1 + r2
ℓ) c1 − 2 c1(vℓ)]

(1 − r4
ℓ) ]
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Leptonic decay radiative corrections in QEDL

• New from Lattice 2023:  contributions 
 
 
 

•  contains largely unknown branch-cut contributions 

•  unknown form factor derivative 

• It’s ok, wait a couple of slides…

1/L3

𝒞ℓ

A(0,1)(0, − m2
P)

30

32π2mP

fP(1 − r4
ℓ)(mPL)3 {c0(vℓ) [FV − FA + 2m2

Pr2
ℓA(0,1)(0, − m2

P)] + c0𝒞ℓ}

Lattice 2023: Nils Hermansson-Truedsson



 IR-improvement and QEDL QEDr

• Modified QED action, new FV coefficients 

•  can be tuned to cancel arbitrary sets of FV coefficients 

• Useful choice: , defined by 

w|n|2

QEDr

31

cj(v) = Δ′ n [ 1
|n |j (1 − v ⋅ n̂) ] + ∑

n≠0 [
w|n|2

|n |j (1 − v ⋅ n̂) ]

w|n|2 =
δ|n|2,1

6
which gives c0 = 0

Davoudi, AP,  et al. PRD99(3), 034510 (2019)

Matteo Di Carlo: Lattice 2023 plenary



Consequences of IR improvement

•  has no  corrections to the scalar mass 

•  has no  corrections to the  HVP 
(assuming zero spatial momentum) 

• For weak decays it is more complicated because of the 
presence of  at  

• More improvement can be done, but will generally require 
process and kinematics-dependent weights

QEDr 1/L3

QEDr 1/L3 ππ

c0(vℓ) 1/L3

32

Davoudi, AP,  et al. PRD99(3), 034510 (2019)



Colinear divergences in finite volume

•  has a non-trivial angular dependence, and diverges 
linearly with  for  

• Relevant for leptonic decays 
with ultra-relativistic leptons 
in final state 
(e.g. ) 

• Very different from symmetric, 
logarithmic behaviour in 
infinite-volume

cj(v)
1 − |v | |v | → 1

D+ → μ+νμ

33

c0(v)
AP Lattice 2023



c0(v)



c0(v)



Dealing with  effects for leptonic decays1/L3

• With ,  

• Collinear divergences can be tamed stochastically 
averaging momentum direction across measurements (SDA) 

• With ,  

• Alternatively, one can solve  (magic angles) 

• Removes  FV corrections in leptonic decays!

QEDr c0 = 0

QEDr ⟨c0(v)⟩v̂ = 0

c0(v*) = 0

1/L3

35



Outlook



UKQCD current status

•  + magic angles running in Edinburgh for  RBC-
UKQCD physical point at  

• Volume scaling study of  at unphysical masses 

• Disconnected diagrams computation starting soon

QEDr 643

a ≃ 0.08 fm

QEDr

37
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•  + magic angles running in Edinburgh for  RBC-
UKQCD physical point at  

• Volume scaling study of  at unphysical masses 

• Disconnected diagrams computation starting soon

QEDr 643

a ≃ 0.08 fm

QEDr
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Prelim
inary



Summary

• Unambiguous and accurate results for radiative corrections 
to weak meson decays is crucial for pushing further 
unitarity tests of the CKM matrix 

• Lattice results already competitive for kaons and pions 

• Experimental efforts are also required (e.g. NA62/HIKE) 

• Lattice should be ready to move to heavy quarks 

• Recent improvements allow control of FV effects up to 
high orders in finite-volume QED
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Edinburgh Consensus on QCD+QED prescriptions

• Proposed to FLAG and g-2 TI
40

Iso-symmetric QCDPure QCD
<latexit sha1_base64="Do3I/08XXaGDrY1MAzprXJTCzTM="></latexit>

M̂⇡+ = 135.0 MeV

M̂K+ = 491.6 MeV

M̂K0 = 497.6 MeV

M̂Ds = 1967 MeV

<latexit sha1_base64="7zQ2Pb3vluA7upaEvB9MOPY2H+M="></latexit>

M̄⇡ = 135.0 MeV

M̄K = 494.6 MeV

M̄Ds = 1967 MeV

Scale
<latexit sha1_base64="VYzNepEZzvkUWv5j1c/yAb/k/lw=">AAACGnicdVDLSsNAFJ34rPUVdelmsAiuQqK2tguh6MaNUME+oAlhMp20Q2eSMDMRSoi/4cZfceNCEXfixr8xaSu+DwycOede7r3HixiVyjTftJnZufmFxcJScXlldW1d39hsyTAWmDRxyELR8ZAkjAakqahipBMJgrjHSNsbnuZ++4oIScPgUo0i4nDUD6hPMVKZ5OqW7SGR+Kmb2BFNj+0BUp8/68A0ytc2R2ogeHJOWqltF129ZBpWrVqu1OBvYhnmGCUwRcPVX+xeiGNOAoUZkrJrmZFyEiQUxYykRTuWJEJ4iPqkm9EAcSKdZHxaCnczpQf9UGQvUHCsfu1IEJdyxL2sMl9T/vRy8S+vGyu/6iQ0iGJFAjwZ5McMqhDmOcEeFQQrNsoIwoJmu0I8QAJhlaWZh/BxKfyftPYNq2KULw5L9ZNpHAWwDXbAHrDAEaiDM9AATYDBDbgDD+BRu9XutSfteVI6o017tsA3aK/vQfahpQ==</latexit>

f̄⇡ = f̂⇡ = 130.5 MeV

Converging on QCD+QED prescriptions 
 Edinburgh, 29-31 May 2023



Leptonic decays correlation functions examples
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Figure 5. Factorizable diagram with a photon exchanged between the two constituent quarks,
Rexch

PP (t) and Rexch
PA (t), for pion (a) and kaon (b). The solid lines with error band correspond to the

best fits of the data.
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Figure 6. Factorizable diagram with u-quark self-energy correction, Rself,u
PP (t) and Rself,u

PA (t), for
pion (a) and kaon (b). The solid lines correspond to the best fits of the data.

case the slopes of the correlators correspond to the corrections to the meson mass δmexch
P

and δmself,u
P (see eqs. (4.21) and (4.22)). The correction due to the scalar insertion on the

u-quark leg is shown instead in figure 7.
The non-factorizable correlators Rnf

Pℓ defined in eq. (4.36) are reported in figure 8 for
both pions (left) and kaons (right). The expected time behaviour fPℓ(t, T ) is visible from
the data, with plateaus in the region t ≪ T/2. The dependence on the lepton source-sink
time separation tℓ is suppressed by the use of the projector on the forward propagating
signal (see appendix C.3 for more details). The constant fits to the data corresponding
to the highest value of the AIC weight are reported in the figures, while the grey points
identify the data which are not included in any of the top 5 best fits selected in our analysis.
The details for the best fits are reported in table 1 for the 7 analyses performed in this work.
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Figure 2. Quark-connected Feynman diagrams contributing to the leading IB corrections to the
weak decay. The wiggly lines correspond to photons, and the diamond-shaped vertices are scalar
insertions.

with eq1 = +2/3|e| and eq2 = −1/3|e|, and Aφ
P the axial matrix element evaluated in

the full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD
theory, σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude
factorizes into a hadronic and a leptonic part, we refer to these contributions as “factorizable”.
The relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e)
and 3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”
corrections to the matrix element where a photon is exchanged between a quark and the
charged lepton (eℓ = −|e|). These are given by

[
δ ĎMrs

P (pℓ)
]nf =

[1
2eℓ

∑

q
eq

∂2

∂eq∂eℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third
term in eq. (3.28) consists in the O(e2ℓ ) contribution of the lepton self-energy in figure 2(h),
which is proportional to A(0)

P with a factor that can be computed analytically in perturbation
theory,

[
δ ĎMrs

P (pℓ)
]ℓ =

[1
2e

2
ℓ
∂2

∂e2ℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

= −A(0)
P

[1
2e

2
ℓ
∂2

∂e2ℓ

]
Lrs
φ (pℓ)

∣∣∣∣
σ(0)

, (3.31)

with Lrs
φ (pℓ) = ⟨ℓ+, r,pℓ; νℓ, s,pν |J0

L|0⟩φ. This perturbative correction, however, cancels in
the difference [Γ0(L) − Γ(2)

0 (L)] in eq. (3.2) and therefore can be neglected in practice in
the calculation. Of course, the lepton self-energy must be included in Γpert

P (mγ).
Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in
treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting
the diagrams in figure 3. The deviations from this approximation are expected to be small,
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Figure 1. Feynman diagram of the tree-level contribution to the weak decay of a positive
pseudoscalar meson P+ ∈ {π+,K+} into a lepton-neutrino pair. The double-square vertex represents
the effective weak Hamiltonian eq. (3.9).

with q1 being a u-type quark and q2 a d-type quark and JρH and JρL denoting the weak
(V − A) hadronic and leptonic currents, respectively. The Feynman diagram associated
with this tree-level term is represented by figure 1.

When including QED at O(αem), the UV corrections to matrix elements of the local
operator OW differ from those of the Standard Model and a matching between the two
theories is therefore needed. This is usually performed in the so-called W -regularization [26,
27], and we refer to refs. [8, 10] for detailed discussions on the argument. After the inclusion
of QCD and QED at O(αem) and assuming that chiral symmetry is preserved, the effective
Hamiltonian reads2

HW = GF√
2
V ∗
q1q2

(
Z0 +

αem
4π δZ

)
OW . (3.11)

Here Z0 is the non-perturbative QCD renormalization constant of the operator OW . The
quantity δZ encodes instead the short-distance matching between the effective theory in
the W -regularization and the Standard Model, as well as the electromagnetic corrections to
the matching of the four-fermion operator OW renormalized non-perturbatively in a given
scheme to the W -regularization one. If OW is a lattice operator and the regularization
used for the fermionic action introduces an explicit chiral symmetry breaking, then the
operator OW undergoes an additive renormalization due to the mixing with other lattice
operators with different chirality and the mixing pattern would be more complicated than
that in eq. (3.11) (see e.g. refs. [8, 10]). In the lattice calculation presented in this work,
however, chiral fermions are employed and therefore in the following we will consider the
operator OW renormalizing multiplicatively as in eq. (3.11), with Z0 = ZV = ZA. Moreover,
if a mass-independent scheme is adopted to renormalize the four-fermion operator, then the
quantities Z0 and δZ will be the same regardless of the masses of the particles involved in the
process. As a consequence, the contribution of the electromagnetic corrections proportional
to δZ will cancel in the calculation of our quantity of interest, δRKπ = δRK − δRπ,
entering eq. (1.3).

In the full theory the (IR regulated) virtual decay rate can be written as

Γ0(L) = K |MP |2 , (3.12)

where K is a factor containing the electro-weak coupling, the CKM matrix elements
and the integration over the two-body phase space, while |MP |2 =

∑
r,s |Mrs

P |2 is the
2When including electromagnetic corrections at O(αem), the Fermi constant GF has to be defined

accordingly. This is conventionally obtained from the muon lifetime including one-loop electromagnetic
corrections and reads GF = 1.16634 × 10−5 GeV−2 [28, 29].
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with q1 being a u-type quark and q2 a d-type quark and JρH and JρL denoting the weak
(V − A) hadronic and leptonic currents, respectively. The Feynman diagram associated
with this tree-level term is represented by figure 1.

When including QED at O(αem), the UV corrections to matrix elements of the local
operator OW differ from those of the Standard Model and a matching between the two
theories is therefore needed. This is usually performed in the so-called W -regularization [26,
27], and we refer to refs. [8, 10] for detailed discussions on the argument. After the inclusion
of QCD and QED at O(αem) and assuming that chiral symmetry is preserved, the effective
Hamiltonian reads2

HW = GF√
2
V ∗
q1q2

(
Z0 +

αem
4π δZ

)
OW . (3.11)

Here Z0 is the non-perturbative QCD renormalization constant of the operator OW . The
quantity δZ encodes instead the short-distance matching between the effective theory in
the W -regularization and the Standard Model, as well as the electromagnetic corrections to
the matching of the four-fermion operator OW renormalized non-perturbatively in a given
scheme to the W -regularization one. If OW is a lattice operator and the regularization
used for the fermionic action introduces an explicit chiral symmetry breaking, then the
operator OW undergoes an additive renormalization due to the mixing with other lattice
operators with different chirality and the mixing pattern would be more complicated than
that in eq. (3.11) (see e.g. refs. [8, 10]). In the lattice calculation presented in this work,
however, chiral fermions are employed and therefore in the following we will consider the
operator OW renormalizing multiplicatively as in eq. (3.11), with Z0 = ZV = ZA. Moreover,
if a mass-independent scheme is adopted to renormalize the four-fermion operator, then the
quantities Z0 and δZ will be the same regardless of the masses of the particles involved in the
process. As a consequence, the contribution of the electromagnetic corrections proportional
to δZ will cancel in the calculation of our quantity of interest, δRKπ = δRK − δRπ,
entering eq. (1.3).

In the full theory the (IR regulated) virtual decay rate can be written as

Γ0(L) = K |MP |2 , (3.12)

where K is a factor containing the electro-weak coupling, the CKM matrix elements
and the integration over the two-body phase space, while |MP |2 =

∑
r,s |Mrs

P |2 is the
2When including electromagnetic corrections at O(αem), the Fermi constant GF has to be defined

accordingly. This is conventionally obtained from the muon lifetime including one-loop electromagnetic
corrections and reads GF = 1.16634 × 10−5 GeV−2 [28, 29].

– 11 –

Ratios

(asymptotically constant in time)

J
H
E
P
0
2
(
2
0
2
3
)
2
4
2

−1000

−800

−600

−400

−200

0

0 5 10 15 20 25 30 35 40 45

t/a

RS,u
ππ

RS,u
πA

(a) pion

−200

−150

−100

−50

0

0 5 10 15 20 25 30 35 40 45

t/a

RS,u
KK

RS,u
KA

(b) kaon

Figure 7. Factorizable diagram with a scalar insertion along the u-quark line, RS,u
PP (t) and RS,u

PA (t),
for pion (a) and kaon (b). The solid lines correspond to the best fits of the data.
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5.2 Tuning of the bare parameters

From each of the fits performed in the factorizable analyses (1) and (2) outlined in eqs. (5.4)
and (5.5) we obtain an estimate of the masses of the charged pion, the charged and neutral
kaon and the neutral BMW mesons at the simulation iso-QCD point, together with their
leading IB corrections. Analogously, we obtain the mass of the Ω− baryon and its corrections
from the analyses (5), (6) and (7). Imposing the renormalization conditions in section 2,
we can then obtain the relevant mass shifts (m̂φ − m̂(0)), (m̂QCD − m̂(0)) and (m̂φ − m̂QCD)
that allow one to define the IB correction δX̂(σ(0)) to a given observable X̂, as well as
its decomposition into strong isospin-breaking and electromagnetic effects (see eqs. (2.14)
and (2.15)).
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Figure 2. Quark-connected Feynman diagrams contributing to the leading IB corrections to the
weak decay. The wiggly lines correspond to photons, and the diamond-shaped vertices are scalar
insertions.

with eq1 = +2/3|e| and eq2 = −1/3|e|, and Aφ
P the axial matrix element evaluated in

the full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD
theory, σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude
factorizes into a hadronic and a leptonic part, we refer to these contributions as “factorizable”.
The relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e)
and 3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”
corrections to the matrix element where a photon is exchanged between a quark and the
charged lepton (eℓ = −|e|). These are given by

[
δ ĎMrs

P (pℓ)
]nf =

[1
2eℓ

∑

q
eq

∂2

∂eq∂eℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third
term in eq. (3.28) consists in the O(e2ℓ ) contribution of the lepton self-energy in figure 2(h),
which is proportional to A(0)

P with a factor that can be computed analytically in perturbation
theory,

[
δ ĎMrs

P (pℓ)
]ℓ =

[1
2e

2
ℓ
∂2

∂e2ℓ

]
ĎMrs

P (pℓ)
∣∣∣∣
σ(0)

= −A(0)
P

[1
2e

2
ℓ
∂2

∂e2ℓ

]
Lrs
φ (pℓ)

∣∣∣∣
σ(0)

, (3.31)

with Lrs
φ (pℓ) = ⟨ℓ+, r,pℓ; νℓ, s,pν |J0

L|0⟩φ. This perturbative correction, however, cancels in
the difference [Γ0(L) − Γ(2)

0 (L)] in eq. (3.2) and therefore can be neglected in practice in
the calculation. Of course, the lepton self-energy must be included in Γpert

P (mγ).
Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in
treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting
the diagrams in figure 3. The deviations from this approximation are expected to be small,
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with eq1 = +2/3|e| and eq2 = −1/3|e|, and Aφ
P the axial matrix element evaluated in

the full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD
theory, σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude
factorizes into a hadronic and a leptonic part, we refer to these contributions as “factorizable”.
The relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e)
and 3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”
corrections to the matrix element where a photon is exchanged between a quark and the
charged lepton (eℓ = −|e|). These are given by
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∑
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]
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, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third
term in eq. (3.28) consists in the O(e2ℓ ) contribution of the lepton self-energy in figure 2(h),
which is proportional to A(0)

P with a factor that can be computed analytically in perturbation
theory,
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with Lrs
φ (pℓ) = ⟨ℓ+, r,pℓ; νℓ, s,pν |J0

L|0⟩φ. This perturbative correction, however, cancels in
the difference [Γ0(L) − Γ(2)

0 (L)] in eq. (3.2) and therefore can be neglected in practice in
the calculation. Of course, the lepton self-energy must be included in Γpert

P (mγ).
Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in
treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting
the diagrams in figure 3. The deviations from this approximation are expected to be small,
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f(k) =
4
k2

−
(2p − k)2

k2[(p − k)2 + m2]

∫
dk0

2π
f(k) =

4m2ωγ(k) + |k | [−p2
0 + 3ωγ(k)2]

2ω(k) |k | [p2
0 + ωγ(k)2]

=
4m2ωγ(k) + |k | [m2 + 3ωγ(k)2]

2ω(k) |k | [ωγ(k)2 − m2]

=
m

|k |2 +
1

|k |
+ R(k)

(sunset) (tadpole)

k
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p
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p� k
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k
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+

p = 0

ω(k) = k2 + m2

ωγ(k) = ω(k) + |k |

analytic in , vanishes at  k |k | = 0



Power-like finite-volume effects: example
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• FV coefficient 

QEDL k = 2π
L n k ≠ 0

Δ′ k = (∑k≠0 − ∫ d3k
(2π)3 ) = 1

L3 Δ′ n

cj = Δ′ n |n |−j = Z00 ( j
2 , 0)
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ΔFVm2(L) = Δ′ k ( m
|k |2 +

1
|k |

+ R(k))
=

c2m
4π2L

+
c1

2πL2
+ Δ′ kR(k)



Non-localities

• If  is analytic, the sum-integral difference in  decays 
exponentially with  

• This is not true in  because of the missing modes 
 

• Related to FV coefficient  

• Effects proportional to  are non-local effects

f(k) k
L

QEDL

c0 = Δ′ n(1) = − 1

c0
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Δ′ k f(k) = −
f(0)
L3



Exponential vs power, how much does it matter?
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unknown NLO  
IB effects are relevant

exponential similar  
to powers ≥ 3

known for masses,  
g-2 & leptonic decays


