

Challenges in high-precision determinations of CKM matrix elements using lattice QCD

Antonin Portelli - 21/02/2024
CERN TH Colloquium
erc

THE UNIVERSITY of EDINBURGH

General context

Flavour structure of the Standard Model

$$
\left[\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\
V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right]\left[\begin{array}{c}
d \\
s \\
b
\end{array}\right]
$$

- The flavour structure of the SM is largely unexplained
- CKM matrix elements are inferred from measurements
- Non-unitary of the CKM matrix is still a good target for searching new physics

CKM matrix elements from leptonic decays

- Leptonic decays: W-boson quark pair annihilation
- Radiation inclusive decay rate

$$
\Gamma\left(P^{+} \rightarrow \ell^{+} \nu_{\ell}[\gamma]\right)=\frac{G_{F}^{2}}{8 \pi} f_{P}^{2} m_{\ell}^{2} M_{P}\left(1-\frac{m_{\ell}^{2}}{M_{P}^{2}}\right)^{2}\left|V_{q_{1} q_{2}}\right|^{2}\left(1+\delta R_{\mathrm{P}}\right)
$$

CKM matrix elements from leptonic decays

$$
\Gamma\left(P^{+} \rightarrow \ell^{+} \nu_{\ell}[\gamma]\right)=\frac{G_{F}^{2}}{8 \pi} f_{P}^{2} m_{\ell}^{2} M_{P}\left(1-\frac{m_{\ell}^{2}}{M_{P}^{2}}\right)^{2}\left(1+\delta_{\mathrm{IB}}\right)\left|V_{q_{1} q_{2}}\right|^{2}
$$

- from experiment/PDG
- isospin-symmetric QCD component
- isospin-breaking QCD+QED component

CKM matrix elements from semi-leptonic decays

- Semi-leptonic decays: flavour changing charged current
- Radiation inclusive decay rate

$$
\Gamma\left(P^{+} \rightarrow Q^{0} \ell^{+} \nu_{t}[\gamma]\right)=G_{F}^{2}\left|V_{q_{1} q_{2}}\right|^{2} \mathscr{I}\left(1+\delta_{\mathrm{IB}}\right)
$$

$\left|V_{u s}\right| \&\left|V_{u d}\right|$ anomalies

Significant tensions from

β decays $\left|V_{u d}\right|$ measurements \& radiative corrections input
国 FLAG 2021 + web update

$f_{D} / f_{D_{s}}$ accuracy

$N_{f}=2+1+1$ FLAG average $f_{D_{s}} / f_{D}=1.1783(0.0016)$

General issues regarding isospin breaking effects

- Isospin-breaking (IB) effects are a small perturbation of hadronic quantities, generally $\mathcal{O}(1 \%)$
- Two components required

1) distinct up and down masses
2) electromagnetic interactions between quarks

- Required for precision hadronic physics
- Including QED is challenging. Computing IB effects might not be required for lower precision targets.

Conventions defining pure QCD

- For an observable X one ideally wants an expansion

$$
\begin{aligned}
& X^{\phi}=\bar{X}+X_{\gamma}+X_{\mathrm{SU}(2)} \\
& \qquad \begin{array}{l}
\quad \\
\\
\\
\\
\text { strong isospin-breaking } \\
\text { EM isospin-breaking }
\end{array} \\
& \text { iso-symmetric }
\end{aligned}
$$

- A complete set of hadron masses defines X^{ϕ} unambiguously
- The separation in 3 contributions requires additional conditions, and is scheme-dependent

Radiative corrections to leptonic decays

Isospin-breaking corrections to light-meson leptonic decays from lattice simulations at physical quark masses

Peter Boyle, ${ }^{a, b}$ Matteo Di Carlo, ${ }^{b}$ Felix Erben, ${ }^{b}$ Vera Gülpers, ${ }^{b}$ Maxwell T. Hansen, ${ }^{b}$ Tim Harris, ${ }^{b}$ Nils Hermansson-Truedsson, ${ }^{c, d}$ Raoul Hodgson, ${ }^{b}$ Andreas Jüttner, e, f Fionn Ó hÓgáin, ${ }^{b}$ Antonin Portelli, ${ }^{b}$ James Richings ${ }^{b, e, g}$ and Andrew Zhen Ning Yong ${ }^{b}$

Lattice QCD

- Quantum field theory on a discrete Euclidean space-time
- Enable Monte-Carlo estimations of the path integral
- It is free from weak-coupling approximations
- Systematic way to compute nonperturbative hadronic quantities

Our "particle accelerator"

Edinburgh lattice team \& Tursa, July 2022

Whe $\begin{aligned} & \text { Science and } \\ & \text { Technology } \\ & \text { Facilities Council }\end{aligned}$

RBC/UKQCD physical point ensemble C0

- Möbius domain-wall fermions
- 2+1 flavours at the physical point
- $a \simeq 0.12 \mathrm{fm}$ and $L^{3} \times T=48^{3} \times 96$

國 $R B C-U K Q C D$ PRD 93(7), 074505 (2016)

- 60 independent configurations
- 96 measurements per configuration

Euclidean correlation functions

Energies and matrix elements extracted from the large-time behaviour of Euclidean correlation functions

Euclidean time version of LSZ formula

$$
C_{\mathrm{P} \ell}^{(0)}\left(t, t_{\ell}\right)=\frac{Z_{P} \mathrm{e}^{-m_{P} t} \mathrm{e}^{-\omega_{\ell} t_{\ell}} \mathrm{e}^{-\omega_{\nu} t_{\ell}}}{8 m_{P} \omega_{\ell} \omega_{\nu}} \mathscr{A}_{P}^{(0)} \mathscr{L}+\cdots
$$

Quark-connected isospin corrections

(d)

(e)

(f)

(g)

(h)

Quark-disconnected isospin corrections

Significant numerical challenge
No computed here (partially quenched calculation)

Data analysis

- $\delta R_{K \pi}$ is predicted from fitting 25 correlators
- Contains fac. and nonfact. corrections, and scale setting

$$
\delta R_{K \pi}=\delta R_{K}-\delta R_{\pi}
$$

(IB corrections to K and π leptonic decay rate ratio)

Final result

$$
\delta R_{K \pi}=-0.0086(3)_{\text {stat. }}\binom{+11}{-4}_{\mathrm{fit}}(5)_{\text {disc. }}(5)_{\text {quench. }}(39)_{\mathrm{vol} .}
$$

- Error dominated by finite-volume uncertainties (more about that shortly)

$$
\left|V_{\mathrm{us}}\right| /\left|V_{\mathrm{ud}}\right|=0.23154(28)_{\exp .}(15)_{\delta R_{K \pi}}(45)_{\delta R_{K \pi}, \mathrm{vol} .}(65)_{f_{K} / f_{\pi}}
$$

- First need better control on volume and f_{K} / f_{π} Then experimental error dominates

Comparison to other determinations

㜽 Matteo Di Carlo Lattice 2023

Finite-volume effects in QED

Relativistic, model-independent determination of electromagnetic finite-size effects beyond the pointlike approximation
M. Di Carlo®, M. T. Hansen®, and A. Portelli®
School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
N. Hermansson-Truedsson© *
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland(Received 18 November 2021; accepted 8 February 2022; published 27 April 2022)

We present a relativistic and model-independent method to derive structure-dependent electromagnetic finite-size effects. This is a systematic procedure, particularly well-suited for automation, which works at arbitrarily high orders in the large-volume expansion. Structure-dependent coefficients appear as zeromomentum derivatives of physical form factors which can be obtained through experimental measurements or auxiliary lattice calculations. As an application we derive the electromagnetic finite-size effects on the pseudoscalar meson mass and leptonic decay amplitude, through orders $\mathcal{O}\left(1 / L^{3}\right)$ and $\mathcal{O}\left(1 / L^{2}\right)$, respectively. The structure dependence appears at this order through the meson charge radius and the real radiative leptonic amplitude, which are known experimentally.

Photon zero-modes

- Photon Green function equation (Feynman gauge)

$$
-\Delta G_{\mu \nu}(x)=\delta_{\mu \nu} \delta(x)
$$

- Infinite volume:

Laplacian spectrum non-zero a.e., potentially invertible

- Periodic finite-volume:

Isolated zero-mode, non-invertible

Photon zero-modes

- Finite volume QED loop integrals undefined

$$
\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{f(\mathbf{k})}{\mathbf{k}^{2}} \longmapsto \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{f(\mathbf{k})}{\mathbf{k}^{2}}, \text { with } \mathbf{k}=\frac{2 \pi}{L} \mathbf{n}
$$

possibly divergent isolated $f(0) / 0$ term IR divergences

- $\mathrm{QED}_{\mathrm{L}}$: remove 3D zero-modes from photon field

E1 Hayakawa \& Uno, PTP 120 413-441 (2008)
国 BMWc Science 347 1452-1455 (2015)

Non－localities

－ $\mathrm{QED}_{\mathrm{L}}$ non－local in space（but local in time）
－Potential issues with EFTs and renormalisation
－Alternatives known， $\mathrm{QED}_{\mathrm{L}}$ most popular choice so far Massive photons
国 Endres，et al．PRL 117（7） 072002 （2016）
C＊boundary conditions
国 Lucini，et al．JHEPO2 76 （2016）
Infinite－volume reconstruction
国 Feng \＆Jin PRD 100（9）， 094509 （2019）
国 Christ et al．PRD 108（1）， 014501 （2023）

Zero-mode regularisation

- $\operatorname{In} \mathrm{QED}_{\mathrm{L}}$

$$
\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{f(\mathbf{k})}{\mathbf{k}^{2}} \longmapsto \frac{1}{L^{3}} \sum_{\mathbf{k} \neq \mathbf{0}} \frac{f(\mathbf{k})}{\mathbf{k}^{2}}
$$

- Finite-volume effects

$$
\Delta_{\mathbf{k}}^{\prime} \frac{f(\mathbf{k})}{\mathbf{k}^{2}}=\left(\frac{1}{L^{3}} \sum_{\mathbf{k} \neq \mathbf{0}}-\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}}\right) \frac{f(\mathbf{k})}{\mathbf{k}^{2}}
$$

- Soft-photon singularities: power law in $1 / L$ asymptotics

Finite-volume expansion

- Expansion in inverse powers of L, with coefficients

$$
c_{j}(\mathbf{v})=\Delta_{\mathbf{n}}^{\prime}\left[\frac{1}{|\mathbf{n}|^{j}(1-\mathbf{v} \cdot \hat{\mathbf{n}})}\right] \quad \begin{aligned}
& \Delta_{\mathbf{n}}^{\prime}=\left(\sum_{\mathbf{n} \neq \mathbf{0}}-\int \mathrm{d}^{3} \mathbf{n}\right) \\
& \hat{\mathbf{n}}=\mathbf{n} /|\mathbf{n}| \\
& \mathbf{v}: \text { velocity }
\end{aligned}
$$

- For example, scalar QED $_{\mathrm{L}}$ self-energy FV effects

$$
\begin{aligned}
\Delta_{\mathrm{FV}} \omega(\mathbf{p})^{2} & =m q^{2}\left[\frac{1}{\gamma(|\mathbf{v}|)} \frac{c_{2}(\mathbf{v})}{4 \pi^{2} m L}+\frac{c_{1}}{2 \pi(m L)^{2}}+\cdots\right] \\
\mathbf{v} & =\frac{\mathbf{p}}{\sqrt{\mathbf{p}^{2}+m^{2}}}
\end{aligned}
$$

国 Davoudi, AP, et al. PRD99(3), 034510 (2019)

Pseudo-scalar mass corrections in $\mathrm{QED}_{\mathrm{L}}$

- $1 / L \& 1 / L^{2}$ terms are universal
- $1 / L^{3}$ term depends on radius and branch-cut contribution
- $1 / L^{3}$ is purely non-local
- Higher orders depend on polarisabilities, etc...

国 Di Carlo, AP, et al. PRD 105(7), 074509 (2022)

Leptonic decay radiative corrections in $\mathrm{QED}_{\mathrm{L}}$

(a)

(d)

(e)

(f)

(g)

$$
\begin{aligned}
\Gamma_{0}^{(n)}(L) & =\Gamma_{0}^{\text {tree }}\left[1+2 \frac{\alpha}{4 \pi} Y^{(n)}(L)\right]+\mathcal{O}\left(\frac{1}{L^{n+1}}\right) \\
Y^{(2)}(L) & =\frac{3}{4}+4 \log \left(\frac{m_{\ell}}{m_{W}}\right)+2 \log \left(\frac{m_{W} L}{4 \pi}\right)+\frac{c_{3}-2\left(c_{3}\left(\mathbf{v}_{\ell}\right)-B_{1}\left(\mathbf{v}_{\ell}\right)\right)}{2 \pi}- \\
& -2 A_{1}\left(\mathbf{v}_{\ell}\right)\left[\log \left(\frac{m_{P} L}{2 \pi}\right)+\log \left(\frac{m_{\ell} L}{2 \pi}\right)-1\right]-\frac{1}{m_{P} L}\left[\frac{\left(1+r_{\ell}^{2}\right)^{2} c_{2}-4 r_{\ell}^{2} c_{2}\left(\mathbf{v}_{\ell}\right)}{1-r_{\ell}^{4}}\right]+ \\
& +\frac{1}{\left(m_{P} L\right)^{2}}\left[-\frac{F_{A}^{P}}{f_{P}} \frac{4 \pi m_{P}\left[\left(1+r_{\ell}^{2}\right)^{2} c_{1}-4 r_{\ell}^{2} c_{1}\left(\mathbf{v}_{\ell}\right)\right]}{1-r_{\ell}^{4}}+\frac{8 \pi\left[\left(1+r_{\ell}^{2}\right) c_{1}-2 c_{1}\left(\mathbf{v}_{\ell}\right)\right]}{\left(1-r_{\ell}^{4}\right)}\right]
\end{aligned}
$$

国 Di Carlo, AP, et al. PRD 105(7), 074509 (2022)

Leptonic decay radiative corrections in $\mathrm{QED}_{\mathrm{L}}$

$$
\begin{aligned}
Y^{(2)}(L) & =\frac{3}{4}+4 \log \left(\frac{m_{t}}{m_{W}}\right)+2 \log \left(\frac{m_{W} L}{4 \pi}\right)+\frac{c_{3}-2\left(c_{3}\left(\mathbf{v}_{t}\right)-B_{1}\left(\mathbf{v}_{t}\right)\right)}{2 \pi}- \\
& -2 A_{1}\left(\mathbf{v}_{t}\right)\left[\log \left(\frac{m_{P} L}{2 \pi}\right)+\log \left(\frac{m_{t} L}{2 \pi}\right)-1\right]-\frac{1}{m_{P} L}\left[\frac{\left(1+r_{t}^{2}\right)^{2} c_{2}-4 r_{t}^{2} c_{2}\left(\mathbf{v}_{t}\right)}{1-r_{t}^{4}}\right]+ \\
& +\frac{1}{\left(m_{P} L\right)^{2}}\left[-\frac{F_{A}^{P}}{f_{P}} \frac{4 \pi m_{P}\left[\left(1+r_{t}^{2}\right)^{2} c_{1}-4 r_{t}^{2} c_{1}\left(\mathbf{v}_{t}\right)\right]}{1-r_{t}^{4}}+\frac{8 \pi\left[\left(1+r_{t}^{2}\right) c_{1}-2 c_{1}\left(\mathbf{v}_{t}\right)\right]}{\left(1-r_{t}^{4}\right)}\right]
\end{aligned}
$$

- $\log \& 1 / L$ terms universal
- $1 / L^{2}$ depends on real radiation form factor F_{A}

国 Di Carlo, AP, et al. PRD 105(7), 074509 (2022)

Leptonic decay radiative corrections in $\mathrm{QED}_{\mathrm{L}}$

- New from Lattice 2023: $1 / L^{3}$ contributions
$\frac{32 \pi^{2} m_{P}}{f_{P}\left(1-r_{t}^{4}\right)\left(m_{P} L\right)^{3}}\left\{c_{0}\left(\mathbf{v}_{\ell}\right)\left[F_{V}-F_{A}+2 m_{P}^{2} r_{\ell}^{2} A^{(0,1)}\left(0,-m_{P}^{2}\right)\right]+c_{0} \mathscr{C}_{\ell}\right\}$
Wattice 2023: Nils Hermansson-Truedsson
- \mathscr{C}_{ℓ} contains largely unknown branch-cut contributions
- $A^{(0,1)}\left(0,-m_{P}^{2}\right)$ unknown form factor derivative
- It's ok, wait a couple of slides...

$\mathrm{QED}_{\mathrm{L}}$ IR-improvement and $\mathrm{QED}_{\mathrm{r}}$

- Modified QED action, new FV coefficients

$$
c_{j}(\mathbf{v})=\Delta_{\mathbf{n}}^{\prime}\left[\frac{1}{|\mathbf{n}|^{j}(1-\mathbf{v} \cdot \hat{\mathbf{n}})}\right]+\sum_{\mathbf{n} \neq \mathbf{0}}\left[\frac{w_{|\mathbf{n}|^{2}}}{|\mathbf{n}|^{j}(1-\mathbf{v} \cdot \hat{\mathbf{n}})}\right]
$$

E Davoudi, AP, et al. PRD99(3), 034510 (2019)

- $w_{|\mathbf{n}|^{2}}$ can be tuned to cancel arbitrary sets of FV coefficients
- Useful choice: $\mathrm{QED}_{\mathrm{r}}$, defined by

$$
w_{|\mathbf{n}|^{2}}=\frac{\delta_{|\mathbf{n}|^{2}, 1}}{6} \quad \text { which gives } \quad c_{0}=0
$$

또․ Matteo Di Carlo: Lattice 2023 plenary

Consequences of IR improvement

- $\mathrm{QED}_{\mathrm{r}}$ has no $1 / L^{3}$ corrections to the scalar mass
- $\mathrm{QED}_{\mathrm{r}}$ has no $1 / L^{3}$ corrections to the $\pi \pi$ HVP (assuming zero spatial momentum)
- For weak decays it is more complicated because of the presence of $c_{0}\left(\mathbf{v}_{\ell}\right)$ at $1 / L^{3}$
- More improvement can be done, but will generally require process and kinematics-dependent weights
国 Davoudi, AP, et al. PRD99(3), 034510 (2019)

Colinear divergences in finite volume

- $c_{j}(\mathbf{v})$ has a non-trivial angular dependence, and diverges linearly with $1-|\mathbf{v}|$ for $|\mathbf{v}| \rightarrow 1$
品 AP Lattice 2023
- Relevant for leptonic decays with ultra-relativistic leptons in final state

$$
\text { (e.g. } D^{+} \rightarrow \mu^{+} \nu_{\mu} \text {) }
$$

- Very different from symmetric, logarithmic behaviour in infinite-volume

Dealing with $1 / L^{3}$ effects for leptonic decays

- With $\mathrm{QED}_{\mathrm{r}}, c_{0}=0$
- Collinear divergences can be tamed stochastically averaging momentum direction across measurements (SDA)
- With $\mathrm{QED}_{\mathrm{r}},\left\langle c_{0}(\mathbf{v})\right\rangle_{\hat{\mathrm{v}}}=0$
- Alternatively, one can solve $c_{0}\left(\mathbf{v}^{*}\right)=0$ (magic angles)
- Removes $1 / L^{3}$ FV corrections in leptonic decays!

Outlook

UKQCD current status

- $\mathrm{QED}_{\mathrm{r}}+$ magic angles running in Edinburgh for 64^{3} RBCUKQCD physical point at $a \simeq 0.08 \mathrm{fm}$
- Volume scaling study of $\mathrm{QED}_{\mathrm{r}}$ at unphysical masses
- Disconnected diagrams computation starting soon

UKQCD current status

Summary

- Unambiguous and accurate results for radiative corrections to weak meson decays is crucial for pushing further unitarity tests of the CKM matrix
- Lattice results already competitive for kaons and pions
- Experimental efforts are also required (e.g. NA62/HIKE)
- Lattice should be ready to move to heavy quarks
- Recent improvements allow control of FV effects up to high orders in finite-volume QED

Thank you!

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreements No 757646 \& 813942.

Edinburgh Consensus on QCD+QED prescriptions

$$
\begin{array}{cr}
\text { Pure QCD } & \text { Iso-symmetric QCD } \\
\hat{M}_{\pi^{+}}=135.0 \mathrm{MeV} & \bar{M}_{\pi}=135.0 \mathrm{MeV} \\
\hat{M}_{K^{+}}=491.6 \mathrm{MeV} & \bar{M}_{K}=494.6 \mathrm{MeV} \\
\hat{M}_{K^{0}}=497.6 \mathrm{MeV} & \bar{M}_{D_{s}}=1967 \mathrm{MeV} \\
\hat{M}_{D_{s}}=1967 \mathrm{MeV} &
\end{array}
$$

Scale $\quad \bar{f}_{\pi}=\hat{f}_{\pi}=130.5 \mathrm{MeV}$
茴 Converging on QCD+QED prescriptions
Edinburgh, 29-31 May 2023

- Proposed to FLAG and g-2 TI

Leptonic decays correlation functions examples

(asymptotic linear in decay with corrections)

Leptonic decays correlation functions examples

(a) pion
(b) kaon

(asymptotically constant in time)

Power-like finite-volume effects: example

Power-like finite-volume effects: example

- In $\mathrm{QED}_{\mathrm{L}}, \mathbf{k}=\frac{2 \pi}{L} \mathbf{n}$ and $\mathbf{k} \neq \mathbf{0}$
- $\Delta_{\mathbf{k}}^{\prime}=\left(\sum_{\mathbf{k} \neq 0}-\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}}\right)=\frac{1}{L^{3}} \Delta_{\mathbf{n}}^{\prime}$

$$
\begin{aligned}
\Delta_{\mathrm{FV}} m^{2}(L) & =\Delta_{\mathbf{k}}^{\prime}\left(\frac{m}{|\mathbf{k}|^{2}}+\frac{1}{|\mathbf{k}|}+R(\mathbf{k})\right) \\
& =\frac{c_{2} m}{4 \pi^{2} L}+\frac{c_{1}}{2 \pi L^{2}}+\Delta_{\mathbf{k}}^{\prime} R(\mathbf{k})
\end{aligned}
$$

- FV coefficient $c_{j}=\Delta_{\mathbf{n}}^{\prime}|\mathbf{n}|^{-j}=Z_{00}\left(\frac{j}{2}, \mathbf{0}\right)$

Non-localities

- If $f(\mathbf{k})$ is analytic, the sum-integral difference in \mathbf{k} decays exponentially with L
- This is not true in $\mathrm{QED}_{\mathrm{L}}$ because of the missing modes

$$
\Delta_{\mathbf{k}}^{\prime} f(\mathbf{k})=-\frac{f(\mathbf{0})}{L^{3}}
$$

- Related to FV coefficient $c_{0}=\Delta_{\mathbf{n}}^{\prime}(1)=-1$
- Effects proportional to c_{0} are non-local effects

Exponential vs power, how much does it matter?

known for masses, g-2 \& leptonic decays
exponential similar to powers ≥ 3
unknown NLO
IB effects are relevant

