FE Reduced Order Models for Superconducting Wires and Cables

Julien Dular

January 31, 2024

Outline

[Introduction](#page-1-0)

[Linked-Flux](#page-7-0)

[Verification](#page-14-0)

[Applications](#page-23-0)

[Conclusions](#page-28-0)

[Additional slides](#page-32-0)

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 1/37

Superconducting magnet modelling

- ▶ Quench protection design requires good AC loss models.
- ▶ Example: CLIQ (coupling-loss induced quench) devices.
- ▶ Magnet geometry is multi-scale and small-scale effects contribute significantly to AC loss.
	- \Rightarrow Need for accurate strand and cable models.

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 2/37

From strand to magnet

Fully discretized magnet models are too heavy to solve. ⇒ Intermediate models are necessary.

Homogenization of small-scale properties in two steps:

Homogenized parameters: magnetization and lumped R and L.

Back to the small-scales, today's focus is AC losses in strands.

Linked-flux method applied on LTS strands.

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 3/37

Problem statement

Multifilamentary strand subject to transport current and magn. field.

Coupling currents [Morgan, 1970] Loss contributions:

Frg. 2. Current paths in some of the superconducting filaments at the surface and the normal metal matrix of a twisted, multifilament wire which is exposed to a uniform changing field. The interior filaments are not shown since they carry no current.

- ▶ Coupling current losses,
- Eddy current in the matrix,
- Losses in SC filaments.

Magnetization (hysteresis).

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 4/37

Equations and FE formulation

Magneto-quasistatic equations and constitutive laws:

$$
\begin{cases}\n\text{div } b = 0, & \text{(Gauss)} \\
\text{curl } h = j, & \text{(Ampère)}\n\end{cases}\n\text{ with }\n\begin{cases}\n b = \mu_0 h, \\
 e = \rho(j, b) j,\n\end{cases}
$$

with the (nonlinear) power law for the resistivity in SC filaments:

$$
\rho(\boldsymbol{j},\boldsymbol{b})=\frac{e_c}{j_c(\boldsymbol{b})}\left(\frac{\|\boldsymbol{j}\|}{j_c(\boldsymbol{b})}\right)^{n-1}
$$

Efficient choice for SC: $h-\phi$ -formulation

.

Weak form of Faraday's law,

Find
$$
\mathbf{h} \in \mathcal{H}(\Omega)
$$
 such that, $\forall \mathbf{h}' \in \mathcal{H}_0(\Omega)$:

$$
\big(\partial_t(\mu_0 \boldsymbol{h})\ , \boldsymbol{h}'\big)_{\Omega}+\big(\rho\ \text{curl}\ \boldsymbol{h}\ , \text{curl}\ \boldsymbol{h}'\big)_{\Omega_c}=0,
$$

▶ It ensures curl $h = 0$ in Ω_c^C ("cuts").

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 5/37

Modelling approaches

▶ **3D model** \Rightarrow Most general but also most expensive (CPU).

▶ **Helicoidal transformation** with a change of variables

 \Rightarrow Efficient and exact with linear materials.

 \Rightarrow Too complex with transv. field + nonlinear materials.

▶ **Linked-flux method**, two coupled 2D models \Rightarrow Approached but very fast with good accuracy.

Outline

[Introduction](#page-1-0)

[Linked-Flux](#page-7-0)

[Verification](#page-14-0)

[Applications](#page-23-0)

[Conclusions](#page-28-0)

[Additional slides](#page-32-0)

[Introduction](#page-1-0) **[Linked-Flux](#page-7-0)** [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 7/37

Linked-flux method - Genesis

Fig. 2. Position of six filaments in the planes $z = 0$ and $z = \pm p/12$.

Fig. 9. Magnetization cycles obtained from Kim's model.

[Satiramatekul, Bouillault, 2005] [Satiramatekul, Bouillault, 2007]

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 8/37

Linked-flux method - Two 2D problems

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 9/37

Linked-flux method - Two 2D problems (Cont'd)

- **Magnetodynamics**
- ▶ Tilt of filaments neglected
- \blacktriangleright Currents: I_i (and I_i)
- \blacktriangleright Voltages: V_i (and V_i)

$$
\begin{aligned} \left(\ell \,\partial_t (\mu \, \boldsymbol{h}) \,, \boldsymbol{h}' \right)_{\Omega} + \left(\ell \, \rho \, \text{curl} \, \boldsymbol{h} \,, \text{curl} \, \boldsymbol{h}' \right)_{\Omega_{\mathbb{C}}} \\ = V_{\mathbb{I}} \mathcal{I}_{\mathbb{I}}(\boldsymbol{h}') + \sum_{i \in F} V_{i} \mathcal{I}_{i}(\boldsymbol{h}'). \end{aligned}
$$

- ▶ Electrokinetics (static!)
- ▶ In matrix $\Omega_{\rm m}$ only
- \blacktriangleright Currents: I_i
- \blacktriangleright Voltages: \tilde{V}_i

$$
\Big(\ell\,\sigma\,\text{grad}\;v\;,\text{grad}\;v'\Big)_{\Omega_\text{m}}+\sum_{i\in F}\tilde{I}_i\tilde{\mathcal{V}}_i(v')=0.
$$

with Ω_c cond. domain, $F = \{1, \ldots, N_f\}$, N_f nb fil., and $\ell = p/6$ here.

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 10/37

Linked-flux method - Coupling equations

Number of global variables: $4N_f + 2$.

- \triangleright OOP and IP problems: $2N_f + 1$ equations for them,
- ▶ Transport current (or voltage) imposed: 1 equation,
- \blacktriangleright Remaining $2N_f$ equations:

After ℓ along z, filament i becomes filament $i = S(i)$:

$$
I_j = I_i + \tilde{I}_i, \qquad V_j = \tilde{V}_j - \tilde{V}_i.
$$

(can be written as an electric circuit, see appendix.)

[Introduction](#page-1-0) **[Linked-Flux](#page-7-0)** [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 11/37

Linked-flux method - Equivalent length

With no correction: overestimation of the flux and current.

- \blacktriangleright We are assuming constant values over ℓ .
- \blacktriangleright Let us reduce ℓ to ℓ^* to acccount for it:

$$
\ell^* = \frac{\sin(\pi \ell/p)}{\pi \ell/p} \ell.
$$

▶ For $\ell = p/6$ (common case), $\ell^*/\ell = 0.9549$.

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 12/37

Linked-flux method - Dynamic coupling currents

The IP problem solves a static current flow:

$$
\left(\ell\,\sigma\,\mathbf{grad}\;v\;,\mathbf{grad}\;v'\right)_{\Omega_{\rm m}}+\sum_{i\in F}\widetilde{I}_i\widetilde{\mathcal{V}}_i(v')=0.
$$

Dynamic coupling current flows are not reproduced

(unless we correct for them, see appendix.)

Static current flow: Dynamic current flow:

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 13/37

Outline

[Introduction](#page-1-0)

[Linked-Flux](#page-7-0)

[Verification](#page-14-0)

[Applications](#page-23-0)

[Conclusions](#page-28-0)

[Additional slides](#page-32-0)

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 14/37

Verification

The approach seems reasonable, but does it actually work?

- ▶ Ideally, validation against experimental measurements.
- \blacktriangleright Here, verification with reference models:
	- Linear case: helicoidal transformation method $(2D-\xi)$

```
\int \xi_1 = x \cos(\alpha z) + y \sin(\alpha z),<br>\xi_2 = -x \sin(\alpha z) + y \cos(\alpha z)\zeta_3 = z,
   \xi_2 = -x \sin(\alpha z) + y \cos(\alpha z), \quad \alpha = 2\pi/p.[Nicolet et al., 2004.] [Dular et al., 2023.]
```


▶ Nonlinear case: 3D model in GetDP

NB: tilted filaments in helicoidal and 3D models make the reference problems slightly different by construction.

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) **[Verification](#page-14-0)** [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 15/37

Verification - Linear

Linear 54-filament problem

- $\blacktriangleright d_{\text{wire}} = 1 \text{ mm}$
- ▶ $p \in [5, 100]$ mm
- $\blacktriangleright \sigma_{\text{fil}} = 10^5 \sigma_{\text{matrix}}$

▶ DOFs linked-flux: 62k ▶ DOFs helicoidal: 110k

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 16/37

Total AC loss:

▶ Solid lines: linked-flux

Dashed lines: helicoidal

Verification - Linear (ref. helicoidal)

Verification - Dynamic correction

Effect of the dynamic correction on coupling currents:

- \blacktriangleright Below 100 Hz, mostly static coupling currents,
- \blacktriangleright Above 10 kHz, mostly eddy current losses.

Verification - Length correction

Effect of the length correction:

- \triangleright Without the correction, poor estimate of the interfilament time constant \Rightarrow wrong coupling losses,
- ▶ Corrected length $\ell^* = 0.9549\ell$ shifts this time constant.

3D model for nonlinear materials

Twisted filaments over length $p/6$. Hybrid 3D mesh.

- ▶ Strong periodic boundary conditions \Rightarrow periodic mesh.
- ▶ Periodic support for the cut shape function (for ϕ).
- \triangleright Structured (and periodic) mesh in the filaments.
- ▶ Standard $h-\phi$ -formulation.

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 20/37

Verification - Nonlinear (first result)

- ▶ GetDP 3D model not optimized \Rightarrow slow (\approx 30 h per simu).
- ▶ Running on HPC cluster.
- \blacktriangleright Further verifications (magnetiz., field maps) are coming.

First test (3D: 666k DOFs)

- \triangleright 54 Nb-Ti filaments.
- \blacktriangleright j_c(b), σ_{Cu} (b), $T = 1.9$ K,
- \blacktriangleright $p = 19$ mm, $I_t = 0$ A,

$$
f = 10
$$
 Hz, $||b|| = 0.2$ T,

 \Rightarrow 6.3% error on AC loss.

Filament current density

Matrix current density

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 21/37

Verification - Analytical models?

Back to linear case, what do analytical models predict?

▶ Coupling currents (loss per cycle): [Campbell, 1982]

$$
\tau_{\rm c} = \frac{\mu_0}{2\rho_{\rm eff}} \left(\frac{p}{2\pi}\right)^2, \quad q_{\rm coupling} = \pi R_{\rm w}^2 \frac{b_{\rm max}^2}{2\mu_0} \frac{\pi \omega \tau_{\rm c}}{(\omega^2 \tau_{\rm c}^2 + 1)} \tag{J/m}
$$

 \blacktriangleright Filament and matrix loss:

 \Rightarrow simple analytical solutions (low and high f limits).

(First attempt of a model: could be improved!)

Dashed contours: $+5\%$ Solid contours: $+10\%$

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) **[Verification](#page-14-0)** [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 22/37

Outline

[Introduction](#page-1-0)

[Linked-Flux](#page-7-0)

[Verification](#page-14-0)

[Applications](#page-23-0)

[Conclusions](#page-28-0)

[Additional slides](#page-32-0)

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) **[Applications](#page-23-0)** [Conclusions](#page-28-0) [Additional slides](#page-32-0) 23/37

Application - Loss map

The linked-flux method is $2D \Rightarrow$ much faster than 3D. \Rightarrow Allows for efficient parameter sweep studies.

Loss per cycle w.r.t. transverse field f and amplitude:

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) **[Applications](#page-23-0)** [Conclusions](#page-28-0) [Additional slides](#page-32-0) 24/37

Application - E-CLIQ study

192-filament strand subject to transverse field:

Application - Magnetization curves

Nb3Sn 108/127 geometry, ramp-up field with different rates:

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) **[Applications](#page-23-0)** [Conclusions](#page-28-0) [Additional slides](#page-32-0) 26/37

Application - Magnetization curves (Cont'd)

Strand homogenization:

⇒ Dynamic vector hysteresis model (energy-based).

[Jacques, 2018]

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) **[Applications](#page-23-0)** [Conclusions](#page-28-0) [Additional slides](#page-32-0) 27/37
000000 0000000 00000000 **00000** 0000 0000 0000000

Outline

[Introduction](#page-1-0)

[Linked-Flux](#page-7-0)

[Verification](#page-14-0)

[Applications](#page-23-0)

[Conclusions](#page-28-0)

[Additional slides](#page-32-0)

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) **[Conclusions](#page-28-0)** [Additional slides](#page-32-0) 28/37

Conclusions and perspectives

Three models for AC losses in strands $(h-\phi$ -formulation)

- ▶ 3D model: good reference,
- ▶ Helicoidal: 2D model, fast and exact in some cases,
- ▶ Linked-flux: 2D model, lightest and fairly accurate.

Implemented in GetDP/Gmsh or FiQuS: open-source.

Outlooks

- 1. Extend the linked-flux method to cable level,
- 2. Use linked-flux solutions to feed homogenized models,
- 3. Extend to HTS conductor geometries.

Contact: julien.dular@cern.ch

Many thanks to Fredrik Magnus, Mariusz Wozniak, and STEAM team!

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) **[Conclusions](#page-28-0)** [Additional slides](#page-32-0) 29/37

References

Analytical AC loss

- ▶ Morgan, G. H. (1970). *Theoretical behavior of twisted multicore superconducting wire in a time-varying uniform magnetic field*. Journal of Applied Physics, 41(9), 3673-3679.
- ▶ Campbell, A. M. (1982). *A general treatment of losses in multifilamentary superconductors*. Cryogenics, 22(1), 3-16.

Helicoidal transformation and linked-flux first papers

- ▶ Nicolet, A., Zolla, F., and Guenneau, S. (2004). *Modelling of twisted optical waveguides with edge elements*. The European Physical Journal Applied Physics, 28(2), 153-157.
- ▶ Satiramatekul, T., and Bouillault, F. (2005). *Magnetization of coupled and noncoupled superconducting filaments with dependence of current density on applied field*. IEEE transactions on magnetics, 41(10), 3751-3753.
- ▶ Satiramatekul, T., Bouillault, F., Devred, A., and Leroy, D. (2007). *Magnetization modeling of twisted superconducting filaments*. IEEE transactions on applied superconductivity, 17(2), 3737-3740.

Recent contributions

- ▶ Jacques, K. (2018). *Energy-based magnetic hysteresis models-theoretical development and finite element formulations*. PhD dissertation, University of Liège, Belgium.
- ▶ Dular, J. (2023). *Standard and mixed finite element formulations for systems with type-II superconductors*. PhD dissertation, University of Liège, Belgium.
- ▶ Dular, J., Henrotte, F., Nicolet, A., Wozniak, M., Vanderheyden, B., and Geuzaine, C. (2023). *Helicoidal Transformation Method for Finite Element Models of Twisted Superconductors*. In press.

Outline

[Introduction](#page-1-0)

[Linked-Flux](#page-7-0)

[Verification](#page-14-0)

[Applications](#page-23-0)

[Conclusions](#page-28-0)

[Additional slides](#page-32-0)

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 31/37

Linked-flux method - Equivalent circuit

The coupling equations $I_j = I_i + \tilde{I}_i$, $V_j = \tilde{V}_j - \tilde{V}_i$ are that of the following equivalent circuit (which is implemented in GetDP):

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) **[Additional slides](#page-32-0)** 32/37

Linked-flux method - Dynamic correction

IP problem is static, we can add a dynamic correction.

 \blacktriangleright Let h_s be one static axial field related to the coupling currents.

(Attention, these currents are not associated with an axial field only, but also with some variation along z , this is neglected here, but it it not negligible. The proposed method is only approximate.)

 \triangleright We extract this field from the solution of the IP problem:

 $(\sigma \text{ grad } v, \text{curl } h'_{s})_{\Omega_{m}} + (\text{curl } h_{s}, \text{curl } h'_{s})_{\Omega_{m}} = 0.$

 \blacktriangleright We introduce a dynamic axial field component h_d , obtained from:

$$
(\mu_0 \partial_t (\mathbf{h}_s + \mathbf{h}_d) , \textbf{curl } \mathbf{h}'_d)_{\Omega_m} + (\rho \textbf{ curl } \mathbf{h}_d , \textbf{curl } \mathbf{h}'_d)_{\Omega_m} = 0.
$$

We used ${\rm curl}\; (\rho\, {\rm curl}\; h_{\rm s})=0$ (as ${\rm curl}\; h_{\rm s}$ is not an eddy ${\rm curl}\; {\rm curl}.$

 \blacktriangleright curl h_d can then be used to correct the IP current.

Helicoidal transformation method

Transverse field does not lead to helicoidally symmetric BC.

But, there is a periodicity along ξ_3 :

$$
h(\xi_1, \xi_2, \xi_3) = \sum_{k=-\infty}^{\infty} h_k(\xi_1, \xi_2) f_k(\xi_3),
$$

with
$$
\begin{cases} f_k(\xi_3) = \sqrt{2} \cos(\alpha k \xi_3), & k < 0, \\ f_0(\xi_3) = 1, \\ f_k(\xi_3) = \sqrt{2} \sin(\alpha k \xi_3), & k > 0. \end{cases}
$$

Special treatment in $\Omega_{\rm c}^{\rm C}$ to satisfy strongly ${\bf curl} \ h=0.$

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) [Additional slides](#page-32-0) 34/37

Transverse field (linear material) - Cont'd

Fro. 2. Current paths in some of the superconducting filaments at the surface and the normal metal matrix of a twisted, multifilament wire which is exposed to a uniform changing field. The interior filaments are not shown since they carry no current. [Morgan, 1970]

Comsol comparison - RRP 108/127 geometry

3D results from Comsol (courtesy of Bernardo Bordini):

2D results from linked-flux method:

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) **[Additional slides](#page-32-0)** 36/37

Comsol comparison - RRP 108/127 geometry (Cont'd)

3D results from Comsol (courtesy of Bernardo Bordini):

2D results from linked-flux method:

[Introduction](#page-1-0) [Linked-Flux](#page-7-0) [Verification](#page-14-0) [Applications](#page-23-0) [Conclusions](#page-28-0) **[Additional slides](#page-32-0)** 37/37