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Superconducting magnet modelling

Magnet Cable Strand

Nb-Ti Cu

▶ Quench protection design requires good AC loss models.
▶ Example: CLIQ (coupling-loss induced quench) devices.
▶ Magnet geometry is multi-scale and small-scale effects

contribute significantly to AC loss.
⇒ Need for accurate strand and cable models.
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From strand to magnet

Fully discretized magnet models are too heavy to solve.
⇒ Intermediate models are necessary.

Homogenization of small-scale properties in two steps:

Homogenized parameters: magnetization and lumped R and L.

Back to the small-scales, today’s focus is AC losses in strands.

⇒ Linked-flux method applied on LTS strands.
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Problem statement

Multifilamentary strand subject to transport current and magn. field.

p/6

htransverse
haxial

Itransport

Coupling currents [Morgan, 1970] Loss contributions:

▶ Coupling current losses,

▶ Eddy current in the matrix,

▶ Losses in SC filaments.

Magnetization (hysteresis).

Introduction Linked-Flux Verification Applications Conclusions Additional slides 4/37



Equations and FE formulation

Magneto-quasistatic equations and constitutive laws:
div b = 0, (Gauss)

curl h = j, (Ampère)
curl e = −∂tb, (Faraday)

with

{
b = µ0h,

e = ρ(j, b) j,

with the (nonlinear) power law for the resistivity in SC filaments:

ρ(j, b) =
ec

jc(b)

( ∥ j∥
jc(b)

)n−1

.
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Efficient choice for SC: h-ϕ-formulation

▶ Weak form of Faraday’s law,
▶ Find h ∈ H(Ω) such that, ∀h′ ∈ H0(Ω):(
∂t(µ0h) ,h

′)
Ω
+

(
ρ curl h , curl h′)

Ωc
= 0,

▶ It ensures curl h = 0 in ΩC
c (“cuts”).
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Modelling approaches

▶ 3D model
⇒ Most general but also most expensive (CPU).

▶ Helicoidal transformation with a change of variables


ξ1 = x cos(αz) + y sin(αz),

ξ2 = −x sin(αz) + y cos(αz),

ξ3 = z,

α = 2π/p.

[Nicolet et al., 2004.] [Dular et al., 2023.]
x

y

z

ξ1 ξ2

ξ
3

⇒ Efficient and exact with linear materials,
⇒ Too complex with transv. field + nonlinear materials.

▶ Linked-flux method, two coupled 2D models
⇒ Approached but very fast with good accuracy.
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Linked-flux method - Genesis

[Satiramatekul, Bouillault, 2005]

[Satiramatekul, Bouillault, 2007]
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Linked-flux method - Two 2D problems

jmatrix
jfil.

jcoupling

Out-of-plane (OOP) 2D problem

In-plane (IP) 2D problem

Circuit
equations
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Linked-flux method - Two 2D problems (Cont’d)

OOP

ℓ

Vi
Ii

▶ Magnetodynamics
▶ Tilt of filaments neglected
▶ Currents: Ii (and It)
▶ Voltages: Vi (and Vt)(
ℓ ∂t(µh) ,h

′
)
Ω

+
(
ℓ ρ curl h , curl h′

)
Ωc

= VtIt(h
′
) +

∑
i∈F

ViIi(h
′
).

IP

ℓ

ṼiĨi

▶ Electrokinetics (static!)
▶ In matrix Ωm only
▶ Currents: Ĩi
▶ Voltages: Ṽi(
ℓ σ grad v , grad v

′
)
Ωm

+
∑
i∈F

ĨiṼi(v
′
) = 0.

with Ωc cond. domain, F = {1, . . . , Nf}, Nf nb fil., and ℓ = p/6 here.
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Linked-flux method - Coupling equations

Number of global variables: 4Nf + 2.
▶ OOP and IP problems: 2Nf + 1 equations for them,
▶ Transport current (or voltage) imposed: 1 equation,
▶ Remaining 2Nf equations:

I1

I1 I2

I3

I4I5

I6

I2

I3

I4I5

I6

z + ℓ

z Ṽ1

Ṽ2

Ṽ3

Ṽ4

Ṽ5

Ṽ6

Ĩ5 Ĩ3

Ĩ6 Ĩ2Ĩ1

Ĩ4

V1

z + ℓ/2

After ℓ along z, filament i becomes filament j = S(i):
Ij = Ii + Ĩi, Vj = Ṽj − Ṽi.

(can be written as an electric circuit, see appendix.)
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Linked-flux method - Equivalent length

With no correction: overestimation of the flux and current.
▶ Quantities vary sinusoidally:

π/6−π/6 π/12−3π/12

▶ We are assuming constant values over ℓ.
▶ Let us reduce ℓ to ℓ∗ to acccount for it:

ℓ∗ =
sin(πℓ/p)

πℓ/p
ℓ.

▶ For ℓ = p/6 (common case), ℓ∗/ℓ = 0.9549.
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Linked-flux method - Dynamic coupling currents

The IP problem solves a static current flow:(
ℓ σ grad v , grad v′

)
Ωm

+
∑
i∈F

ĨiṼi(v
′) = 0.

Dynamic coupling current flows are not reproduced

(unless we correct for them, see appendix.)

Static current flow: Dynamic current flow:
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Verification

The approach seems reasonable, but does it actually work?
▶ Ideally, validation against experimental measurements.
▶ Here, verification with reference models:

▶ Linear case: helicoidal transformation method (2D-ξ)


ξ1 = x cos(αz) + y sin(αz),

ξ2 = −x sin(αz) + y cos(αz),

ξ3 = z,

α = 2π/p.

[Nicolet et al., 2004.] [Dular et al., 2023.]
x

y

z

ξ1 ξ2

ξ
3

▶ Nonlinear case: 3D model in GetDP

[Dular, 2023.]

NB: tilted filaments in helicoidal and 3D models make the reference problems slightly different by construction.
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Verification - Linear

Linear 54-filament problem
▶ dwire = 1 mm
▶ p ∈ [5, 100] mm
▶ σfil = 105 σmatrix

i

S(i)

▶ DOFs linked-flux: 62k
▶ DOFs helicoidal: 110k

p = 5 mm p = 20 mm

Total AC loss:
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p=5.0mm
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p=30.0mm
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p=65.0mm
p=100.0mm

▶ Solid lines: linked-flux
▶ Dashed lines: helicoidal
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Verification - Linear (ref. helicoidal)

LHC pitch lengths

−1%

−2%

+2%

+1%

−5%

E-CLIQ

15 ≲ p/d ≲ 22

20-200 Hz

CLIQ/
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Verification - Dynamic correction

Effect of the dynamic correction on coupling currents:
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▶ Biggest effect around f ≈ 1 kHz,
▶ Below 100 Hz, mostly static coupling currents,
▶ Above 10 kHz, mostly eddy current losses.
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Verification - Length correction

Effect of the length correction:
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▶ Without the correction, poor estimate of the interfilament
time constant ⇒ wrong coupling losses,

▶ Corrected length ℓ∗ = 0.9549ℓ shifts this time constant.
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3D model for nonlinear materials

Twisted filaments over length p/6. Hybrid 3D mesh.

▶ Strong periodic boundary conditions ⇒ periodic mesh.
▶ Periodic support for the cut shape function (for ϕ).
▶ Structured (and periodic) mesh in the filaments.
▶ Standard h-ϕ-formulation.
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Verification - Nonlinear (first result)

▶ GetDP 3D model not optimized
⇒ slow (≈ 30 h per simu).

▶ Running on HPC cluster.
▶ Further verifications (magnetiz.,

field maps) are coming.

First test (3D: 666k DOFs)
▶ 54 Nb-Ti filaments,
▶ jc(b), σCu(b), T = 1.9 K,
▶ p = 19 mm, It = 0 A,
▶ f = 10 Hz, ∥b∥ = 0.2 T,

⇒ 6.3% error on AC loss.

Filament current density

Matrix current density
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Verification - Analytical models?

Back to linear case, what do analytical models predict?
▶ Coupling currents (loss per cycle): [Campbell, 1982]

τc =
µ0

2ρeff

( p

2π

)2
, qcoupling = πR2

w
b2max
2µ0

πωτc

(ω2τ2c + 1)
(J/m)

▶ Filament and matrix loss:
⇒ simple analytical solutions (low and high f limits).

(First attempt of a model: could be improved!)
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Application - Loss map

The linked-flux method is 2D ⇒ much faster than 3D.
⇒ Allows for efficient parameter sweep studies.

Loss per cycle w.r.t. transverse field f and amplitude:

[Campbell, 1982] Linked-flux 2D method
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Application - E-CLIQ study

192-filament strand subject to transverse field:
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Application - Magnetization curves

Nb3Sn 108/127 geometry, ramp-up field with different rates:
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Application - Magnetization curves (Cont’d)

Strand homogenization:
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⇒ Dynamic vector hysteresis model (energy-based).

[Jacques, 2018]
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Conclusions and perspectives

Three models for AC losses in strands (h-ϕ-formulation)
▶ 3D model: good reference,
▶ Helicoidal: 2D model, fast and exact in some cases,
▶ Linked-flux: 2D model, lightest and fairly accurate.

Implemented in GetDP/Gmsh or FiQuS: open-source.

Outlooks
1. Extend the linked-flux method to cable level,

2. Use linked-flux solutions to feed homogenized models,
3. Extend to HTS conductor geometries.

Contact: julien.dular@cern.ch
Many thanks to Fredrik Magnus, Mariusz Wozniak, and STEAM team!
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Linked-flux method - Equivalent circuit

The coupling equations Ij = Ii + Ĩi, Vj = Ṽj − Ṽi are that of the
following equivalent circuit (which is implemented in GetDP):

Ii

Ij

Ĩi

Ṽj

Ṽi
Vj

Node i

Node j = S(i)

Node 0
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Linked-flux method - Dynamic correction

IP problem is static, we can add a dynamic correction.

▶ Let hs be one static axial field related to the coupling currents.
(Attention, these currents are not associated with an axial field only, but also with some variation along z,

this is neglected here, but it it not negligible. The proposed method is only approximate.)

▶ We extract this field from the solution of the IP problem:

(σ grad v , curl h′
s)Ωm

+ (curl hs , curl h′
s)Ωm

= 0.

▶ We introduce a dynamic axial field component hd, obtained from:

(µ0∂t(hs + hd) , curl h′
d)Ωm

+ (ρ curl hd , curl h′
d)Ωm

= 0.

We used curl (ρ curl hs) = 0 (as curl hs is not an eddy current).

▶ curl hd can then be used to correct the IP current.
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Helicoidal transformation method
Transverse field does not lead to helicoidally symmetric BC.

êξ2

êξ3
êy

êz

p

But, there is a periodicity along ξ3:

h(ξ1, ξ2, ξ3) =

∞∑
k=−∞

hk(ξ1, ξ2) fk(ξ3),

with


fk(ξ3) =

√
2 cos(αkξ3), k < 0,

f0(ξ3) = 1,

fk(ξ3) =
√
2 sin(αkξ3), k > 0.

Special treatment in ΩC
c to satisfy strongly curl h = 0.
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Transverse field (linear material) - Cont’d

f = 10−2 Hz. f = 104 Hz.
êx

êy
êx

êy

[Morgan, 1970]
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Comsol comparison - RRP 108/127 geometry

3D results from Comsol (courtesy of Bernardo Bordini):

2D results from linked-flux method:
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Comsol comparison - RRP 108/127 geometry (Cont’d)

3D results from Comsol (courtesy of Bernardo Bordini):

2D results from linked-flux method:
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