
A Unified Common Source for 
Material Properties across Simulation 

modelling tools
Georgia Zachou

07/03/2024



Challenge

7 March 2024Georgia Zachou | Steam-material-library 2

Independent individual sources and functions 
exist for each simulation tool.

Material functions may slightly vary or even 
become invalid in a specific ranges.

Potentially different simulation results for the 
same phenomena.

Reasons: 
Lack of well-documented sources, different 
sources, mistakes while writing functions.

Modelling tools are written or even use various programming language. This means:

Hard-coded python functions

COMSOL material library



A few words for STEAM modelling tools…

7 March 2024Georgia Zachou | Steam-material-library 3

CERNGetDP1/FiQuS2:
1CERNGetDP GitLab repository

1FiQuS GitLab repository

Focus: Modeling 2D/3D thermo-
electromagnetic transients in superconducting 
magnets and cables.

Language/Interface: FiQuS relies on Gmsh for 
geometry and meshing and on GetDP for solving 
and postprocessing.

Importance: Provides stable and accurate 
solutions for discrete problem solving. Used 
previously hardcoded GetDP functions.

https://gitlab.cern.ch/steam/cerngetdp
https://gitlab.cern.ch/steam/fiqus


A few words for STEAM modelling tools…

7 March 2024Georgia Zachou | Steam-material-library 4

STEAM-LEDET1:
1LEDET GitLab repository

Focus: Modeling electromagnetic and thermal 
transients in magnets (mainly LTS, Niobium-
Titanium, Niobium-Tin) in 2D & 3D geometries.

Language: Matlab.

Importance: Used for protection studies to 
assess magnet survival in failure scenarios. 
Used steam-ledet-material-library.

https://gitlab.cern.ch/steam/fiqus


A few words for STEAM modelling tools…

7 March 2024Georgia Zachou | Steam-material-library 5

SIGMA:
1Steam-SIGMA GitLab repository

Focus: simulates electro-magnetic and thermal 
transients in superconducting magnets in a 2D 
geometry using COMSOL (FE model).

Language/Interface: Java, with a Python 
wrapper called pySIGMA.

Importance: Integrates steam-material-library 
into COMSOL simulations for accurate results. 
Used integrated COMSOL material functions.

https://gitlab.cern.ch/steam/steam-sigma


A few words for STEAM modelling tools…

7 March 2024Georgia Zachou | Steam-material-library 6

NICQS1:
1Ni-Coils GitLab repository

Focus: Modeling thermo-electromagnetic behavior in 
non-insulated coils during operation and quench 
(mainly HTS).

Language/Interface: Python

Importance: Simulates thermal transients for High 
Temperature Superconductors (HTS), improving 
efficiency and accuracy. Used hardcoded python 
functions.

https://gitlab.cern.ch/steam/ni-coils


Steam-material-library as a solution…

Expectations:

➢ Compilation of the functions into other 

languages like Matlab and Python, 

ensuring compatibility across all 

modelling tools.

➢ Reduction in discrepancies and errors 

during rewriting or implementation.

➢ Faster results across simulations.

7 March 2024Georgia Zachou | Steam-material-library 7

Steam-material-library introduction:
Unified source containing all material properties used 
across modelling tools.

The functions are based on extrapolated experimental 
data and literature.

There is Consistent naming convention for functions to 
include property type and version.

The functions are written in C programming language 

adding extra advantages.

Why C?

• Efficiency: potential speed improvement.

• Low-level language that can be compiled into 
others

• Easily integrates with other languages for broader 
use



Steam-material-library Contents

Steam-material-library includes material properties and calculations for HTS 
and LTS, serving the purpose of simulating transients.

7 March 2024Georgia Zachou | Steam-material-library 8

Supported Materials

•Ag

•AgMg

•Aluminium Alloys 
(7075/1350/6061/5085/2024/2014)

•BeCu

•Brass

•BSCCO2212

•Cu

•G10

•Hastelloy

•He

•In

•Iron (BH)

•Kapton

•Nb3Sn

•NbTi

•Steel(Stainless Steel)

•Stycast

•Titanium

Properties

•Volumetric heat capacity

•Specific heat

•thermal conductivity

•Resistivity

•Jc/Ic: Critical Current density 
(LTS & HTS)

Available derivatives for materials:

•Ag

•Aluminium Alloys 
(7075/1350/6061/5085/2024/2014)

•BeCu

•Brass

•BSCCO2212

•Cu

•G10

•Hastelloy

•In

•Kapton

•Nb3Sn

•NbTi

•Steel(Stainless Steel)

•Titanium

Others…

•Current Sharing for HTS



Compilation Process

7 March 2024Georgia Zachou | Steam-material-library 9

BBQ

SIGMA
to .dll

to .mex

One single C source

Material functions used in FiQuS through 

CERNGetDP3

CERNGetDP

wrapper STEAM-materials python package1 used in:

PyBBQ

NICQS

STEAM_MatPro MatLab-mex class2 used in:

LEDET

1Pypi steam-material-library
3STEAM_MatPro MatLab class
3CERNGetDP interface

https://pypi.org/project/STEAM-materials/
https://gitlab.cern.ch/steam/steam-material-library/-/tree/master/compile_STEAM_MatPro?ref_type=heads
https://gitlab.cern.ch/steam/cerngetdp


1. All C functions are written based on a specific template so that:

➢ mex are compiled properly

➢ but also, COMSOL requires this structure to work.

2. generic_wrapper.cpp ensures 1 output argument C-functions are compiled into mex.

➢ generic_wrapper_v2.cpp has been created to compile functions with more than 1 outputs, but not used as it requires different 

structure on the C template-which has an impact on COMSOL implementation.

3. The MatLab class STEAM_MatPro.m ensures that the input and output arguments of the mex files are 
aligned precisely with those of the MATLAB functions in STEAM-LEDET.
Mex and STEAM_MatPro compilation is automated through a pipeline using 
a virtual machine, and they are also stored on GitLab as artifacts zip files.

4. Run through the MatLab class or independently.

Mex compilation and use

6 March 2024Presenter | Presentation Title 10



GetDP implementation and use
1. csv with function characteristics:

➢ c_function_name

➢ GetDP_function_name

➢ Input_const_param

➢ Input_var_param

➢ mapping

➢ in_helper

2. steam-material-adder.py automatically adds material 
functions to CERNGetDP source code, specifically to 
files:

➢ STEAM_Mat_Lib_ProDefines.h

➢ STEAM_Mat_Lib.h

➢ F_STEAM_Mat_Lib.cpp

To add a C-function on GetDP source code one must add its name 

and characteristics at the csv, and the pipeline will update 

automatically the CERNGetDP source code.

6 March 2024Presenter | Presentation Title 11



DLL compilation and COMSOL implementation of 
steam-material-library

Dual purpose:

1. Integration with COMSOL multi-physics 

platform.

2. Serving as a PyPI library for Python-

based tools.

6 March 2024Presenter | Presentation Title 12

Two methods:

1.Manually update the .list files.

2.Automatically update using the provided scripts:

• make_list.py for Source_c repository.

• make_list.py for Source_c_derivatives repository.

• make_list.py for Source_c_old repository.

1. Update the .list files in the Compiler repository 
with the names of the functions to compile

A Batch script calls Microsoft Visual Studio for compilation. All 
function names are written into .list files. The script automates 
compilation through Microsoft Visual Studio:

• Automatically updates the list files.

• Compiles each source C file into a .obj file using the Microsoft 
C compiler (cl).

• Links the .obj file into a .dll using the Microsoft linker (link), 
creating the DLL.

2. Run automaticLibraryCompiler.bat to compile 
functions listed in the .list files into DLLs:



Two types of tests conducted on various versions of functions, runtime tests and unit tests.

•Runtime Tests include comparison between:

➢ MatLab functions and newly generated Mex files.

➢ STEAM-material functions from Pypi library and previously used (hard-coded) Python-

based material functions.

•Unit tests include comparison between:

➢ GetDP implemented functions and Python files from PyPI library tested and compared.

➢ Previously used MatLab functions and newly generated Mex files are compared.

Tests

6 March 2024Presenter | Presentation Title 13



MatLab – Mex runtime tests

6 March 2024Presenter | Presentation Title 14

Subfigure (a): computing time vs. input 

array size for a generated Mex file and 

its corresponding MatLab function.

Subfigure (b): computing time is lower

using the Mex file for input array sizes 

below 512 elements.

Significant increase observed above 512 

elements of input array.

Subfigure (c): normalized computing 

time (time per 10,000 values) for both 

Mex and MatLab implementations

In every testing array size, the function 

is called 10,000 times.

Above 512: MatLab is doing some 

multithread magic…

CFUN_CvAg_v1 CFUN_CvCu_v1



MatLab – Mex unit tests

6 March 2024Presenter | Presentation Title 15

Subfigures above: MatLab and Mex functions 

are plotted against Temperature in Kelvin [K]. 

The two lines overlap.

Subfigures below: 

Relative error of MatLab and Mex functions is 

plotted against Temperature in Kelvin [K]. 

Typically, small errors are observed around 

the scale of ~10−16.



Runtime tests python-DLL

6 March 2024Presenter | Presentation Title 16

Same exact plots as 

the previous MatLab-

Mex runtime 

comparison.

It seems that for small 

input array DLLs are 

faster than python 

hard-coded functions.

CFUN_CvCu_v1 CFUN_kStycast_v1 CFUN_rhoCu_v1



Runtime results

6 March 2024Presenter | Presentation Title 17

Function name MatLab Mex STEAM-Materials Python

CFUN_CvAg 0.3729 0.2721 0.9200 0.8399

CFUN_CvCu 1.0957 0.2451 0.9270 0.4815

CFUN_kG10 1.7469 0.2432 0.7659 0.8051

CFUN_rhoSS 0.1609 0.0771 0.2531 0.2810

CFUN_rhoCu 2.7372 1.7013 0.9762 1.2088

Function name MatLab Mex STEAM-Materials Python

CFUN_CvAg 1.4728 2.3916 6.1309 6.7191

CFUN_CvCu 2.7532 2.0656 3.0396 3.4927

CFUN_kG10 3.8893 2.1265 6.7812 5.2503

CFUN_rhoSS 0.7526 0.3201 1.4031 1.2822

CFUN_rhoCu 6.0165 17.2304 10.5938 6.6768

N = 5000 (input array size) – 10,000 function calls
Potential speed improvement for some functions.

N = 500 (input array size) – 10,000 function calls
Potential speed improvement for most of the functions especially in MatLab-Mex comparison.



make_tests.py is the main script for the GetDP tests.

• It uses unittest PyPI library to make comparison on the DLL-GetDP functions results, considering a 
relative and absolute tolerance ~𝟏𝟎−𝟒.

• The informations for the functions are taken from input_test.csv.

• It creates locally 3 folders:

• Outputs_msh: Contains GetDP msh files.

• Outputs_pro: Contains GetDP pro files.

• Outputs_txt: Where python results and GetDP results are stored in each column correspondingly. 

The testing procedure is automated on a GitLab pipeline and the Outputs_msh, Outputs_pro and 

Outputs_txt are stored on GitLab Artifacts in a .zip file in case we need to check the output files of 

each function in detail.

CERNGetDP automated tests

6 March 2024Presenter | Presentation Title 18



Aluminium functions & unit tests from literature

6 March 2024Presenter | Presentation Title 19

Based on existing literature, a comparison was conducted on aluminium 

functions. Following this research, a single function was developed to 

describe each property (e.g. Volumetric heat capacity, thermal 

conductivity, resistivity) of all aluminium alloys based on their RRR 

values. 

For additional details, please refer to the GitLab repository.

Experimental data used in the study were obtained from the following 

sources:

• Ekin

• Clark

• NIST

This is an example testing procedure for future unit tests on the rest of 

the material functions…

https://gitlab.cern.ch/steam/steam-material-library/-/blob/master/Source_c/aluminium_alloys_functions_information.pdf


Automated documentation - Website
template_md_files_properties.py script using jinja2
templates, generates automatically script for the update of 
the website. This update is required whenever there is a 
change concerning material functions structure or 
naming.

1. The info for the documentation of the functions are 

taken from their naming and the main CSV file of the 

repository functionsNames_website_csv.

2. Using this info, template_md_files_properties.py 

classifies the functions based on their properties. It 

uses functions_md_files_templates.md template for 

writing the info in a form of documentation for each 

function straight to the website’s source code.

3. The template also uses figures generated from 

MatLab-Mex unit tests to provide an illustration of the 

properties of the functions.

4. For the derivatives we have the same procedure.

20

https://steam-material-library.docs.cern.ch/


Thank you!



Mex compilation and use

6 March 2024Presenter | Presentation Title 22

1. C functions with a 
specific template so that 

mex are compiled properly 
.. But also COMSOL. 

2. Compiled into mex with 
generic_wrapper.cpp 

3. The MatLab class 
STEAM_MatPro.m ensures 
that the input and output 

arguments of the mex files 
are aligned precisely with 

those of the MATLAB 
functions in STEAM-LEDET

4. Run through the MatLab 
class or independently.

generic_wrapper_v2



CERNGetDP material functions implementation

6 March 2024Presenter | Presentation Title 23

csv with function 
characteristics

Steam-material-adder 
automatically adds 

material functions to 
CERNGetDP source 

code


