

Polarisation Measurements in ATLAS

COMETA VB Polarisation Workshop 23/09/2024

Max Stange, IKTP (TU Dresden)

What is Boson Polarisation?

Why Polarisation Measurement?

EWK Symmetry Breaking

Why Polarisation Measurement? EWK Symmetry Breaking

Why Polarisation Measurement? EWK Symmetry Breaking

Preserve unitarity

M. Stange, TU Dresden | COMETA VB Polarisation Workshop 2024 | VBS Polarisation Measurement in ATLAS

ATLAS Polarisation Measurements

Overview

ATLAS Polarisation Measurements

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Super fancy polarisation measurement in VBS from pp collisions at $\sqrt{s}=13\,\text{TeV}$ with the ATLAS detector

The ATLAS Collaboration

Contents

- 1. Cut based analysis with high $VV \rightarrow VV$ purity
- 2. Get polarised samples
- 3. Deal with higher order effects
- 4. Study polarisation
 - 4.1 Machine learning
 - 4.2 Optional: Kinematic effects of polarisation
- 5. Statistical analysis

$W^{\pm}Z$ Polarisation Measurement

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

$W^{\pm}Z$ Polarisation Measurement

Analysis Goal

- Joint-polarisation
 - Measure f_{00} , f_{T0} , f_{0T} , and f_{TT}
- Single-polarisation
 - Individual polarisation of W^{\pm} or Z boson
 - Measure f_0 and $f_L f_R$

arXiv:2211.09435

$W^{\pm}Z$ Polarisation Measurement

Phase Space

Inclusive event selection			
ZZ veto	Less than 4 baseline leptons		
N leptons	Exactly three leptons passing the Z lepton selection		
Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 25 \text{ GeV}$ (in 2015) or $p_{\rm T}^{\rm lead} > 27 \text{ GeV}$ (in 2016)		
Z leptons	Two same flavor oppositely charged leptons passing Z-lepton selection		
Mass window	$ M_{\ell\ell} - M_Z < 10 \text{ GeV}$		
W lepton	Remaining lepton passes W-lepton selection		
W transverse mass	$m_{\rm T}^W > 30 \text{ GeV}$		

arXiv:2211.09435

$W^{\pm}Z$ Polarisation Measurement

DNN to Reconstruct Neutrino p_z

- \vec{p}_{ν} required to access $W^{\pm}Z$ center of mass
 - Improve analytic calculation of $p_z^{
 u}$
 - Regression DNN trained on inclusive Powheg+Pythia sample
 - Introduce m_W constrain in last layer
 - Better regression than analytic p_z^{ν} calculation

$W^{\pm}Z$ Single-Polarisation Measurement

Analysis Strategy

- Fit directly in $\cos \theta_{IW}^*$ and $\cos \theta_{IZ}^*$
- Reweight Powheg+Pythia (NLO-QCD) with corresponding $\cos \theta_{IV}^*$ distribution to get polarised sample
- Measure f_0 and $f_L f_R$

M. Stange, TU Dresden | COMETA VB Polarisation Workshop 2024 | VBS Polarisation Measurement in ATLAS

₹. 4000 0

3000

2500

2000

1500

1000

500

Data / Pred

Events /

$W^{\pm}Z$ Single-Polarisation Measurement Fit Results

- Good agreement with SM
- Dominated by statistical uncertainty
- Dominant systematic is modelling uncertainty

	f_0		$f_{\rm L} - f_{\rm R}$		
	Data	Powheg+Pythia	Data	POWHEG+PYTHIA	
W in W^+Z	0.23 ± 0.05	0.2044 ± 0.0024	0.071 ± 0.023	0.0990 ± 0.0015	
W in W^-Z	0.19 ± 0.05	$0.217 \hspace{0.2cm} \pm \hspace{0.2cm} 0.004$	$0.026~\pm~0.027$	-0.0491 ± 0.0020	
W in $W^{\pm}Z$	0.21 ± 0.04	$0.2094\ \pm\ 0.0016$	0.059 ± 0.016	$0.0390~\pm~0.0011$	
$Z \text{ in } W^+ Z$	$0.223~\pm~0.025$	$0.1971~\pm~0.0019$	-0.20 ± 0.10	-0.217 ± 0.006	
Z in W^-Z	$0.241 ~\pm~ 0.029$	$0.2065~\pm~0.0023$	0.10 ± 0.13	$0.092 ~\pm~ 0.007$	
$Z \text{ in } W^{\pm} Z$	$0.231 ~\pm~ 0.019$	$0.2009 ~\pm~ 0.0014$	-0.10 ± 0.08	-0.092 ± 0.005	

arXiv:2211.09435

$W^{\pm}Z$ Joint-Polarisation Measurement

Simulate Polarisation at NLO-QCD

- Extensive study of polarisation simulation
 ⇒ only nominal strategy presented
- Use two samples:
 - Polarised MadGraph LO-QCD
 - Unpolarised Powheg NLO
- Train 4 binary classifier DNN for pol-sum MadGraph vs pol MadGraph $w_{pol}(X) = \frac{DDN_{pol}(X)}{1 - DDN_{pol}(X)}$
- Use $w_{pol}(X)$ to introduce polarisation in Powheg NLO

arXiv:2211.09435

$W^{\pm}Z$ Joint-Polarisation Measurement

Multivariate Analysis

- Multiclass DNN trained on Madgraph-0,1j@LO
- Modify the 00-output node targets
- ➡ sufficient to separate 00, TT and mixed modes
- Combine DNN output with $\cos \theta_{IW}^*$ and $\cos \theta_{IZ}^*$

$W^{\pm}Z$ Joint-Polarisation Measurement

Fit Results

- Measure f_{00}, f_{T0}, f_{0T} , and f_{TT}
- Statistic, QCD-scale and modelling have similar impact
- Modelling uncertainty mainly from polarisation at NLO-QCD

	Data	Powheg+Pythia	observed	expected
f_{00}	0.067 ± 0.010	0.0590 ± 0.0009	7.1σ	6.2σ
$f_{0\mathrm{T}}$	0.110 ± 0.029	$0.1515 ~\pm~ 0.0017$	3.4σ	5.4σ
$f_{\rm T0}$	0.179 ± 0.023	0.1465 ± 0.0017	7.1σ	6.6σ
$f_{\rm TT}$	0.644 ± 0.032	0.6431 ± 0.0021	11σ	9.7σ

arXiv:2211.09435

$W^{\pm}Z$ Joint-Polarisation Measurement

Spin correlation

© 2024 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Analysis Goal

- Joint-polarisation at high p_T^Z
 - Measure f_{00} , $f_{T0} + f_{0T}$, and f_{TT}
 - Measure p_T^Z dependency with two distinct fits
- Radiation Amplitude Zero (RAZ) effect

Phase Space.

Polarisation Simulation

- Use MadGraph0,1j@LO to get NLO-QCD effects
- Compared with unpolarised NLO samples:
 - Powheg+Pythia8
 - MadGraph aMC@NLO
 - Sherpa
 - ➡ Sufficient NLO modelling
- Scale factor from data in inclusive multi-jet region for remaining NLO-QCD effects

$W^{\pm}Z$ Polarisation Radiation Amplitude Zero

Analysis Strategy

- $\mathcal{M}_{WZ}^{TT} = 0$ at $\theta_V = \pi/2 \Rightarrow$ visible at $\Delta Y_{WZ} = |Y_W Y_Z| = 0$
- Dip is filled by NLO-QCD contributions
- Split in 3 regions to suppress NLO-QCD

W rest frame

WZ rest frame

 $\theta_{\ell z}^*$

W

21

Z rest frame

$W^{\pm}Z$ Polarisation Radiation Amplitude Zero

Measurement

• Unfold $W_T^{\pm}Z_T$

• Depth variable
$$D = 1 - \frac{N_{central}}{N_{sides}/2}$$

- Dominated by statistic
- Dominant systematic are NLO effects

arXiv:2402.16365

$W^{\pm}Z$ Polarisation Energy Dependency

Measurement

- Train BDTs for $W_0^{\pm}Z_0$ vs rest in two p_T^Z regions
- Perform 2 parameter and 3 parameter fit
- Dominated by statistic
- Dominant systematic are NLO effects

23

 $100 \,{\rm GeV} < p_T^Z \le 200 \,{\rm GeV}$

Data
 W₀Z_T+W_TZ₀
 Prompt
 <u>W</u>Tot. Uncert.

Non-prompt

Events/0.1

350

250 200

150 100

Data/Pred

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

SR 100<p^Z≤200 GeV

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Analysis Goal

- Joint-polarisation
 - Cross-section of Z_0Z_0 and $Z_0Z_T + Z_TZ_0 + Z_TZ_T$
- CP-odd optimal variable
 ⇒ not covered in this talk

Phase Space

Category	Requirement
Event Preselection	Fire at least one lepton trigger
	≥ 1 vertex with 2 or more tracks
Four-lepton signature	At least 4 leptons (e, μ)
Lepton kinematics	$p_{\rm T} > 20$ GeV for leading two leptons
Lepton separation	$\Delta R_{ij} > 0.05$ for any two leptons
J/ψ -Veto	$m_{ij} > 5$ GeV for all SFOS pairs
Trigger matching	Baseline leptons matched to at least one lepton trigger
Quadruplet formation	At least one quadruplet with 2 Same-Flavor, Opposite-Sign (SFOS) pairs
	(the quadruplet having the smallest $ m_{Z_1} - m_{Z_{pole}} + m_{Z_2} - m_{Z_{pole}} $ is chosen)
On-shell ZZ pair	$m_{4l} > 180 \text{ GeV}$
On-shell Z boson	$ m_{ij} - m_Z < 10 \text{ GeV}$

Polarisation Simulation

arXiv:2310.04350

Measurement

- Train BDT on LO $q\bar{q} \rightarrow ZZ \rightarrow 4l$ to separate Z_0Z_0 from rest
- Fit normalisation of Z_0Z_0 and $Z_0Z_T + Z_TZ_0 + Z_TZ_T$
- Dominated by statistic

Observation 🎉

• Dominant systematic from reweighting steps

Evidence 🔎

What's next?

Statistic

M. Stange, TU Dresden | COMETA VB Polarisation Workshop 2024 | VBS Polarisation Measurement in ATLAS

https://hilumilhc.web.cern.ch/content/hl-lhc-project

Polarisation Simulation

Powheg-Box-Res+Pythia

[G. Pelliccioli, G. Zanderighi, arXiv:2311.05220] polarisation in VBS @NLO QCD + PS

Sherpa 3

[M. Hoppe, M. Schönherr, F. Siegert, arXiv:2310.14803]

VB polarisation @nLO QCD + PS and also interference

UFO model for gluon-loop induced VB

[M. Javurkova, R. Ruiz, R. Coelho Lopes de Sá, J. Sandesara, arXiv:2401.17365] modify Feynman rules for polarisation in loop-induced processes

What's next?

Polarisation Reconstruction by ML

[M. Grossi, M. Incudini, M. Pellen, G. Pelliccioli, arXiv:2306.07726]

DNN access longitudinal polarisation on amplitude level

$$r_L = \frac{|\mathcal{M}_L|}{|\mathcal{M}|^2}$$

What's next?

 $W_L^{\pm}V_L \rightarrow l^{\pm}\nu q\bar{q}$ with Semi-Leptonic Final State

$W^{\pm}Z$ Polarisation Measurement

Object Selection

Electron object selection				
Selection	Baseline selection	Z selection	W selection	
$p_{\rm T} > 5 { m GeV}$	\checkmark	\checkmark	\checkmark	
Electron object quality	\checkmark	\checkmark	\checkmark	
$ \eta^{\text{cluster}} < 2.47, \eta < 2.5$	\checkmark	\checkmark	\checkmark	
LooseLH+BLayer identification	\checkmark	\checkmark	\checkmark	
$ d_0^{\rm BL}/\sigma(d_0^{\rm BL}) < 5$	\checkmark	\checkmark	\checkmark	
$ \Delta \tilde{z}_0^{\text{BL}} \sin \tilde{\theta} < 0.5 \text{ mm}$	\checkmark	\checkmark	\checkmark	
Loose_VarRad isolation	\checkmark	\checkmark	\checkmark	
<i>e</i> -to- μ and <i>e</i> -to- <i>e</i> overlap removal	\checkmark	\checkmark	\checkmark	
<i>e</i> -to-jets overlap removal		\checkmark	\checkmark	
$p_T > 15 \text{ GeV}$		\checkmark	\checkmark	
Exclude $1.37 < \eta^{cluster} < 1.52$		\checkmark	\checkmark	
MediumLH identification		\checkmark	\checkmark	
HighPtCaloOnly isolation		\checkmark	\checkmark	
$p_T > 20 \text{ GeV}$			\checkmark	
TightLH identification			\checkmark	
Tight_VarRad isolation			\checkmark	
Unambiguous author			\checkmark	
${\tt DFCommonAddAmbiguity} \leq 0$			\checkmark	

Muon object selection						
Selection	Baseline selection	Z selection	W selection			
$p_{\rm T} > 5 { m GeV}$	✓	\checkmark	✓			
$ \eta < 2.7$	\checkmark	\checkmark	\checkmark			
Loose quality	\checkmark	\checkmark	\checkmark			
$ d_0^{\rm BL}/\sigma(d_0^{\rm BL}) < 3 \ (for \ \eta < 2.5 \ only)$	\checkmark	\checkmark	\checkmark			
$ \Delta z_0^{\text{BL}} \sin \theta < 0.5 \text{ mm} (for \eta < 2.5 only)$	\checkmark	\checkmark	\checkmark			
PflowLoose_FixedRad isolation	\checkmark	\checkmark	\checkmark			
μ -jet Overlap Removal		\checkmark	✓			
$p_{\rm T} > 15 { m GeV}$		\checkmark	\checkmark			
$ \eta < 2.5$		\checkmark	\checkmark			
Medium quality		\checkmark	\checkmark			
$p_T > 20 \text{ GeV}$			\checkmark			
Tight quality			\checkmark			
PflowTight_FixedRad isolation			\checkmark			

$W^{\pm}Z$ Polarisation Measurement

Event Selection

Inclusive event selection			
Event cleaning	Reject LAr, Tile and SCT corrupted events and incomplete events		
Primary vertex	Hard scattering vertex with at least two tracks		
Trigger 2015	HLT_e24_lhmedium_L1EM20VH HLT_e60_lhmedium HLT_e120_lhloose		
Ingger 2013	HLT_mu20_iloose_L1MU15 HLT_mu50		
Triagan 2016 2019	HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0		
111gger 2010–2018	HLT_mu26_ivarmedium HLT_mu50		
ZZ veto	Less than 4 baseline leptons		
N leptons	Exactly three leptons passing the Z lepton selection		
Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 25 \text{ GeV}$ (in 2015) or $p_{\rm T}^{\rm lead} > 27 \text{ GeV}$ (in 2016)		
Z leptons	Two same flavor oppositely charged leptons passing Z-lepton selection		
Mass window	$ M_{\ell\ell} - M_Z < 10 \text{ GeV}$		
W lepton	Remaining lepton passes W-lepton selection		
W transverse mass	$m_{\rm T}^W > 30 { m GeV}$		

$W^{\pm}Z$ Polarisation Energy Dependency & RAZ Event Selection

Inclusive WZ event selection			
Event cleaning	Reject LAr, Tile and SCT corrupted events and incomplete events		
Primary vertex	Hard scattering vertex with at least two tracks		
Triggers in 2015	HLT_e24_lhmedium_L1EM20VH HLT_e60_lhmedium HLT_e120_lhloose		
mggers m 2015	HLT_mu20_iloose_L1MU15 HLT_mu50		
Triggory in 2016, 2018	<pre>HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0</pre>		
111ggels III 2010–2018	HLT_mu26_ivarmedium HLT_mu50		
ZZ veto	Less than 4 baseline leptons		
N leptons	Exactly three leptons passing the Z lepton selection		
Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 25 \text{ GeV}$ (in 2015) or $p_{\rm T}^{\rm lead} > 27 \text{ GeV}$ (in 2016-2018)		
Z leptons	Two same flavor oppositely charged leptons passing the Z-lepton selection		
Z lepton invariant mass	$ m_{\ell\ell} - M_Z < 10 \mathrm{GeV}$		
W lepton	Remaining lepton passes the W-lepton selection		
W transverse mass	$m_{\rm T}^W > 30 { m GeV}$		
ΔR	$\Delta R(\ell_Z^-, \ell_Z^+) > 0.2, \Delta R(\ell_Z, \ell_W) > 0.3$		
Signal regions			

	Radiation Amplitude Zero	00-enhanced region 1	00-enriched region 2			
Pass inclusive WZ event selection	\checkmark	\checkmark	\checkmark			
Transverse momentum of the Z boson (p_T^Z)	-	[100, 200] GeV	> 200 GeV			
Transverse momentum of the WZ system (p_T^{WZ})	< 20, 40, 70 GeV		< 70 GeV			

Event Selection

Category	Requirement
Event Preselection	Fire at least one lepton trigger
	≥ 1 vertex with 2 or more tracks
Four-lepton signature	At least 4 leptons (e, μ)
Lepton kinematics	$p_{\rm T} > 20 \text{ GeV}$ for leading two leptons
Lepton separation	$\Delta R_{ij} > 0.05$ for any two leptons
J/ψ -Veto	$m_{ij} > 5$ GeV for all SFOS pairs
Trigger matching	Baseline leptons matched to at least one lepton trigger
Quadruplet formation	At least one quadruplet with 2 Same-Flavor, Opposite-Sign (SFOS) pairs
	(the quadruplet having the smallest $ m_{Z_1} - m_{Z_{pole}} + m_{Z_2} - m_{Z_{pole}} $ is chosen)
On-shell ZZ pair	$m_{4l} > 180 \text{ GeV}$
On-shell Z boson	$ m_{ij} - m_Z < 10 \text{ GeV}$

$W^{\pm}Z$ Polarisation Energy Dependency & RAZ Measurement

	Measurement			Predictio	on
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
f_{00}	$0.19 \pm _{0.03}^{0.03} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$0.13 \pm _{0.08}^{0.09} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$ f_{00}$	0.152 ± 0.006	0.234 ± 0.007
f_{0T+T0}	$0.18 \pm_{0.08}^{0.07} (\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$	$\int f_{0T}$	0.120 ± 0.002	0.062 ± 0.002
f_{TT}	$0.63 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$	$\int f_{T0}$	0.109 ± 0.001	0.058 ± 0.001
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ	$\ f_{TT}$	0.619 ± 0.007	0.646 ± 0.008
	Maagu	uom on t		Duadiati	
	Ivieasu	rement		Predicu	on
	$100 < n^Z < 200 \text{ GeV}$	$n^Z > 200 \text{ GeV}$		$100 < n^{2} < 200 \text{ GeV}$	$n^{Z} > 200 \text{ GeV}$
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
	$100 < p_T^Z \le 200 \text{ GeV}$ 0.17 ± ^{0.02} _{0.02} (stat) ± ^{0.01} _{0.02} (syst)	$p_T^Z > 200 \text{ GeV}$ 0.16 $\pm_{0.05}^{0.05}$ (stat) $\pm_{0.03}^{0.02}$ (syst)	$\frac{ }{ } f_{00}$	$100 < p_T^Z \le 200 \text{ GeV}$ 0.152 ± 0.006	$p_T^Z > 200 \text{ GeV}$ 0.234 ± 0.007
$ f_{00} f_{XX} $	$100 < p_T^Z \le 200 \text{ GeV}$ $0.17 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.02}^{0.01} (\text{syst})$ $0.83 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.01}^{0.02} (\text{syst})$	$p_T^Z > 200 \text{ GeV}$ $0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$ $0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$		$100 < p_T^Z \le 200 \text{ GeV}$ 0.152 ± 0.006 0.120 ± 0.002	$p_T^Z > 200 \text{ GeV}$ 0.234 ± 0.007 0.062 ± 0.002
f_{00} f_{XX} $f_{00} \text{ obs (exp) sig.}$	$\begin{array}{l} 100 < p_T^Z \leq 200 \; \mathrm{GeV} \\ \hline 0.17 \pm_{0.02}^{0.02} \; (\mathrm{stat}) \pm_{0.02}^{0.01} \; (\mathrm{syst}) \\ 0.83 \pm_{0.02}^{0.02} \; (\mathrm{stat}) \pm_{0.01}^{0.02} \; (\mathrm{syst}) \\ \hline 7.7 \; (6.9) \; \sigma \end{array}$	$p_T^Z > 200 \text{ GeV}$ $0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$ $0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$ $3.2 (4.2) \sigma$	$ \begin{array}{c c} & f_{00} \\ & f_{0T} \\ & f_{T0} \end{array} $	$100 < p_T^Z \le 200 \text{ GeV}$ 0.152 ± 0.006 0.120 ± 0.002 0.109 ± 0.001	$p_T^Z > 200 \text{ GeV}$ 0.234 ± 0.007 0.062 ± 0.002 0.058 ± 0.001

$W^{\pm}Z$ Single-Polarisation Measurement

Z in $W^{\pm}Z$ W^{\pm} in $W^{\pm}Z$ $f_{\rm L} - f_{\rm R}$ f_0 $f_{\rm L} - f_{\rm R}$ f_0 Relative uncertainty [%] e energy scale and id. efficiency 0.81.30.71.4 μ energy scale and id. efficiency 2.10.80.55 $E_{\rm T}^{\rm miss}$ and jets 1.92.80.283.03.1Pile-up 1.44 1.2Misidentified lepton background 3.40.81.21.6ZZ background 0.70.62.50.6Other backgrounds 0.91.30.71.3Parton Distribution Function 2.90.50.50.05QCD scale 6 0.226 53.1Modelling 122.219Total systematic uncertainty 1411 3.521Luminosity 0.250.090.060.19Statistical uncertainty 13409 90 Total 4090 1910

$W^{\pm}Z$ Joint-Polarisation Measurement

Uncertainties

	f_{00}	$f_{0\mathrm{T}}$	$f_{\rm T0}$	$f_{\rm TT}$		
Relative uncertainty [%]						
e energy scale and id. efficiency μ energy scale and id. efficiency $E_{\rm T}^{\rm miss}$ and jets Pile-up Misidentified lepton background ZZ background Other backgrounds	$\begin{array}{c} 0.34 \\ 0.8 \\ 3.3 \\ 0.6 \\ 2.3 \\ 0.9 \\ 3.0 \end{array}$	$\begin{array}{c} 0.6 \\ 0.23 \\ 1.3 \\ 0.17 \\ 1.6 \\ 0.17 \\ 1.6 \end{array}$	$\begin{array}{c} 0.8 \\ 0.23 \\ 1.2 \\ 0.4 \\ 0.8 \\ 0.32 \\ 1.3 \end{array}$	$\begin{array}{c} 0.31 \\ 0.13 \\ 0.4 \\ 0.15 \\ 0.26 \\ 0.07 \\ 0.4 \end{array}$		
Parton Distribution Function QCD scale	$0.5 \\ 0.19$	1.8 8	0.09	$0.5 \\ 2.0 \\ 1.0$		
Total systematic uncertainty	9 14	4	2.9	1.2		
Luminosity	0.35	0.24	0.15	$\frac{1}{0.05}$		
Total	13 19	10	12	3.0 5		

$W^{\pm}Z$ Polarisation Radiation Amplitude Zero

Uncertainties

$p_T^Z < 70 GeV$

 $p_T^Z < 40 \, GeV$

 $p_T^Z < 20 \, GeV$

Impact [%]				Impact [%]				Impact [%]						
Source	TT	state	Sum of po	olarizations	Source	TT s	tate	Sum of po	larizations	Source	TT :	state	Sum of po	larizations
Experimental	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	$ \Delta Y(\ell_W Z) $	$\Delta Y(WZ)$	Experimental	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	Experimental	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$
Luminosity	1.5	0.6	0.5	0.1	Luminosity	1.4	0.5	0.4	0.1	Luminosity	1.2	0.5	0.3	0.1
Electron calibration	0.9	0.5	1.7	0.4	Electron calibration	1.1	0.6	1.2	0.4	Electron calibration	1.3	0.7	0.7	0.2
Muon calibration	1.6	0.8	1.4	0.5	Muon calibration	1.9	0.8	1.1	0.6	Muon calibration	1.9	0.7	1.1	0.8
Jet energy scale and resolution	3.4	1.9	1.8	1.2	Jet energy scale and resolution	5.1	2.5	1.2	1.1	Jet energy scale and resolution	8.1	3.6	2.0	1.0
$E_{\rm T}^{\rm miss}$ scale and resolution	1.3	1.0	2.2	1.4	$E_{\rm T}^{\rm miss}$ scale and resolution	1.0	1.1	1.7	1.8	$E_{\rm T}^{\rm miss}$ scale and resolution	0.3	0.8	0.4	1.0
Flavor-tagging inefficiency	0.0	0.0	0.1	0.0	Flavor-tagging inefficiency	0.0	0.0	0.1	0.0	Flavor-tagging inefficiency	0.0	0.0	0.0	0.0
Pileup modelling	0.0	0.4	3.4	0.4	Pileup modelling	0.3	0.6	3.3	0.2	Pileup modelling	1.3	1.3	2.7	0.4
Non-prompt background estimation	9.5	3.6	13.5	3.7	Non-prompt background estimation	7.2	2.5	10.0	2.7	Non-prompt background estimation	4.2	1.4	5.7	1.7
Modelling					Modelling					Modelling				
Background, other	5.7	2.1	8.0	2.1	Background, other	4.9	1.7	6.5	1.8	Background, other	4.0	1.4	4.9	1.5
Model statistical	2.4	1.3	4.6	2.0	Model statistical	2.4	1.2	4.3	2.0	Model statistical	2.3	1.3	4.1	2.2
NLO corrections	9.2	1.0	0.0	0.0	NLO corrections	11.3	1.7	0.0	0.0	NLO corrections	13.3	3.5	0.0	0.0
PDF, Scale and shower settings	7.5	3.9	0.7	0.2	PDF, Scale and shower settings	9.0	4.3	0.6	0.3	PDF, Scale and shower settings	13.1	5.4	0.7	0.5
Unfolding uncertainty	0.0	2.3	0.0	2.6	Unfolding uncertainty	0.0	1.4	0.0	0.9	Unfolding uncertainty	0.0	4.4	0.0	0.8
Experimental and modelling	17.0	6.8	17.2	5.7	Experimental and modelling	18.0	6.5	13.3	4.5	Experimental and modelling	21.5	9.1	9.3	3.7
Data statistical	12.8	6.2	27.0	10.3	Data statistical	13.3	5.9	26.0	10.3	Data statistical	13.3	6.5	24.1	11.7
Total	21.3	9.3	32.0	11.8	Total	22.4	8.8	29.2	11.2	Total	25.3	11.1	25.9	12.3

Uncertainties

2 parameter fit

Source	Impact on f_{00} [%]			
Experimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		
Luminosity	0.1	0.1		
Electron calibration	1.0	0.9		
Muon calibration	0.6	0.6		
Jet energy scale and resolution	3.1	4.8		
$E_{\rm T}^{\rm miss}$ scale and resolution	0.3	0.3		
Flavor-tagging inefficiency	0.0	0.0		
Pileup modelling	1.0	0.7		
Non-prompt background estimation	3.6	0.6		
Modelling				
Background, other	0.9	0.9		
Model statistical	1.6	2.2		
NLO QCD effects	3.7	9.1		
NLO EW effects	0.9	7.5		
Effect of additive vs multiplicative QCD+EW combination	0.5	1.7		
Interference impact	2.4	1.4		
PDF, Scales, and shower settings	4.0	4.0		
Experimental and modelling	8.1	13.9		
Data statistical	11.4	31.4		
Total	14.0	34.4		

3 parameter fit

Source	Impact on f_{00} [%]			
Experimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		
Luminosity	0.1	0.2		
Electron calibration	1.0	0.9		
Muon calibration	1.1	1.3		
Jet energy scale and resolution	5.9	9.0		
$E_{\rm T}^{\rm miss}$ scale and resolution	1.0	0.6		
Flavor-tagging inefficiency	0.1	0.2		
Pileup modelling	1.6	1.1		
Non-prompt background estimation	5.8	0.8		
Modelling				
Background, other	1.4	1.6		
Model statistical	2.5	5.6		
NLO QCD effects	6.8	8.2		
NLO EW effects	1.1	3.3		
Effect of additive vs multiplicative QCD+EW combination	1.3	3.8		
Interference impact	1.4	0.7		
PDF, Scales, and shower settings	3.5	9.2		
Experimental and modelling	12.1	17.7		
Data statistical	18.0	64.5		
Total	21.7	66.9		

Uncertainties

Contribution	Relative uncertainty [%]
	24
Data statistical uncertainty	23
Total systematic uncertainty	8.8
MC statistical uncertainty	1.7
Theoretical systematic uncertainties	
$q\bar{q} \rightarrow ZZ$ interference modelling	6.9
NLO reweighting observable choice for $q\bar{q} \rightarrow ZZ$	3.7
PDF, α_s and parton shower for $q\bar{q} \rightarrow ZZ$	2.2
NLO reweighting non-closure	1.0
QCD scale for $q\bar{q} \rightarrow ZZ$	0.2
NLO EW corrections for $q\bar{q} \rightarrow ZZ$	0.2
$gg \rightarrow ZZ$ modelling	1.4
Experimental systematic uncertainties	
Luminosity	0.8
Muons	0.6
Electrons	0.4
Non-prompt background	0.3
Pile-up reweighting	0.3
Triboson and $t\bar{t}Z$ normalisations	0.1

ML Comparison

Variables

$W^{\pm}Z$ Polarisation

$W^{\pm}Z$ Polarisation Kinematic

ZZ Analysis

$\frac{\text{Variables}}{\Delta Y(l_W Z)}$	Variables	Variables
$p_T(WZ) \ p_T(l_W)$	$\frac{\Delta Y(l_W Z)}{p_T(WZ)}$	$\Delta \phi(l_1 l_2)$ in ZZ-rest $\Delta \phi(l_2 l_4)$ in ZZ rost
$p_T(l_{Z;1}) \ p_T(l_{Z:2})$	$p_T(l_W)$ $p_T(l_{Z;2})$	$\cos \theta^*(Z_1)$ in ZZ-rest $\cos Z$
$\Delta \phi(l_W l_ u) \ \Delta \phi(l_{Z \cdot 1} l_{Z \cdot 2})$	$\cos \theta^*_{decay}(Z)$ in $W^{\pm}Z$ -rest boosted in Z-rest $\cos \theta^*_{decay}(W)$ in $W^{\pm}Z$ -rest boosted in W^{\pm} -rest	$\cos \theta^*_{decay}(Z_1)$ in ZZ-rest $\cos \theta^*_{decay}(Z_2)$ in ZZ-rest
$\underbrace{E_T^{miss}}_{T}$	E_T^{miss}	decay(22) III 22 -ICSU

