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Overview of CMS cross section results
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@ Polarisation of gauge bosons (W and Z) related to Electroweak symmetry breaking
longitudinal polarisation

“the Higgs mechanism is the conversion of Goldstone modes into the longitudinal polarisation mode of
massive weak bosons” [Pelliccioli]

probe of new physics/extended Higgs sector

vig)

This costs too much
energy! | think I'll
hang out down there.
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Definition

Master formula

2 2

‘MNWA(ZJ)

> Mu(pp = Zj) - My (Z = £707)
hen

v
Mzl 7

with A = {+1, —1} (Transverse), 0 (Longitudinal)
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Definition

Master formula

2 2

> Mu(pp = Zj) - My (Z = £707)

‘MNWA(ZJ)
hen

v
Mzl 7

with A = {+1, —1} (Transverse), 0 (Longitudinal)

o Unpolarised cross section aynp. ~ |MNWA2 (experimentally measured)

e Polarised cross section: op, ~ |[Mgl|? - |o|?

e Polarisation fraction: | fi, = o1,/ ounp.
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“Measuring polarisation”

@ No measurement of polarisation: template method
—» extraction of parameters based on theory input

T d 0\\’&
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“Measuring polarisation”

@ No measurement of polarisation: template method
—» extraction of parameters based on theory input

T olon\’&
Shortcomings about polarisation
extraction

/\ Polarisation only defined for on-shell
bosons

/A Only the unpolarised prediction is
observed
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Experimental analyses

@ WZ: [aTLAS; 1002.05759, 2211.09435], [CMS; 2110.11231]

@ Vector-boson scattering WEWE [CMS; 2009.09429]
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Discussion

Drawbacks of the template method

@ Restricted to given observables

@ Unclear what are the optimal
observables

@ Interpretation at the integrated level
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Discussion

Drawbacks of the template method

@ Restricted to given observables

@ Unclear what are the optimal
observables

@ Interpretation at the integrated level

Typical in experiment:

— NN/BDT on samples of longitudinally
polarised vs. background samples

Drawbacks:

o Difficult learning
— large samples needed

@ Il defined discrimination between
signal and background
— Indirect link to polarisation definition

@ Unclear what to feed
(empirical and high-level variables)
—» possibly not optimal
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Amplitude-assisted tagging of longitudinally polarised bosons
using wide neural networks
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o New idea for polarisation extraction:

Amplitude-assisted tagging of longitudinally polarised bosons
using wide neural networks

Theory Experiment

Matrix element LHC collision LHC collision+Parton shower
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General idea

Use amplitude to extract theory parameters / pseudo observables from data
requires the use of neural network
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General idea

Use amplitude to extract theory parameters / pseudo observables from data
requires the use of neural network

Advantages
o Restricted-togivenobservables — No observable
o Unelearwhat-arethe-optimal-observables — optimal by definition
o | : : I

event-by-event interpretation (fully differential)

/\ General method usable for other problems
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General idea

Use amplitude to extract theory parameters / pseudo observables from data
requires the use of neural network

Advantages

o Restricted-togivenobservables — No observable
o Unelearwhat-arethe-optimal-observables — optimal by definition
o | : : I

event-by-event interpretation (fully differential)

/\ General method usable for other problems
Alternative approaches:

@ matrix-element method (kendo; J. Phys. Soc. Jap. 57 (1988) 4126-4140 / 60 (1991) 836-844.]
("] optimal—observable method [Diehl, Nachtmann; Z. Phys. C 62 (1994) 397-412, hep-ph/9603207], [Janot; 1503.01325]

o MELA (Matrix Element Likelihood Approach) [Gao, Gritsan, Melnikov, Schulze, et al.; 1001.3396, 1208.4018,1309.4819, 1606.03107]
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Simple observation

dor, /dounp

L : 2

i(0) = Tk /S with oo /dd>|/\/l|

At the /phase-space—point level, at leading order (LO), equivalent to
(M?

A\ n, is the probability for an event to be longitudinally polarised
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Simple observation

f.(0) = d“L/d"“np with o /dd>|/\/l|2

- do/ do
At the /phase-space—point level, at leading order (LO), equivalent to
(M?

/\ 1, is the probability for an event to be longitudinally polarised
NB:

@ All information about longitudinal polarisation contained in r,

or
Polarised predictions obtainable by reweighting unpolarised ones with r,
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Application

Z+j production at the LHC at /s = 13.6 TeV
© MADGRAPH5_AMCQ@NLO for checks

[Alwall, et al.; 1405.0301], [Buarque Franzosi, Mattelaer, Ruiz, Shil; 1912.01725]

RECOLA [Actis et al; 1605.01000) fOr r, computation

PYTHIA [sjsstrand et al.; 1410.3012] for PS
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Application

Z+j production at the LHC at /s = 13.6 TeV
© MADGRAPH5_AMCQ@NLO for checks

[Alwall, et al.; 1405.0301], [Buarque Franzosi, Mattelaer, Ruiz, Shil; 1912.01725]

RECOLA [Actis et al; 1605.01000) fOr r, computation

PYTHIA [sjsstrand et al.; 1410.3012] for PS

Generation set-up

prj > 10GeV, lyi] <5, and 76 GeV < M+~ < 106 GeV
Inclusive set-up

pr; > 20GeV, lyi| < 4, and 81GeV < M+~ < 101 GeV

/\ No cuts on Z-boson decay products
Fiducial set-up = Inclusive set-up

pr, i+ > 20 GeV and |y« <27
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do/dr; [pb]
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Polarisation weights in Z+j @ 13.6TeV: MC truth, generation level
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Longitudinal signal in Z+j @ 13.6TeV: r' reweighting, inclusive
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NB: For LO+PS, reweighting done on events before PS
assumption: polarisation is not influenced by PS
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Longitudinal signal in Z+j @ 13.6TeV: r' reweighting, inclusive

Polarisation vyelghts in Z+J @ 13A6TeV:‘MC truth, ge‘neratlon level soprre £33 MC truth, LO
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NB: For LO+PS, reweighting done on events before PS

assumption: polarisation is not influenced by PS

A\ 1, requires knowledge of all momenta (initial and final)
A\ ri, requires knowledge of the partonic process and the PDF: (gg — q, 9§ — g, ...)
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Solution — Wide neural networks

. hidden layers
input
o) (:®)

Truth

@ Training with Monte Carlo events \{//Q}\\:{{@}\y{{/k}\\y{{/

< /7

O AX XA QXK

AT ™
R BB LRGN

e Parameter to learn: r, XXX
° |(r|1ptfct: all'a:-:cessi)ble information %%@g@%&%&%&@.@
eptons, jets, ... 3 0> O > '

N AV AV AVAY

@ Result: 7,

Proxy of r,
Relies only on accessible information

Mathieu PELLEN Machine-learning methods for polarisation tagging



ratio to MC truth
o o r r r
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Longitudinal signal in Z+j @ 13.6TeV: r}"C vs 7PN, LO, inclusive
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— Method is working at LO
at per-cent level
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LO+PS using LO training

Longitudinal signal in Z+j @ 13.6TeV: r}"¢ vs 7PN, LOPS, inclusive

[ MCtruth ]
1 rew. with FoV™

A\ Failing!

(describing PS corrections instead
of polarisation)

— Retraining ...

0 ... with r;, computed before PS!
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LO+PS with warm-up

Longitudinal signal in Z+] @ 13.6TeV: rC vs 724, LOPS, fiducial
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— Warmup training gives better results
Initial conditions of the LO+PS learning is set by LO learning
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LO+PS with warm-up

Longitudinal signal in Z+j @ 13.6TeV: rC vs 72", LOPS, fiducial Longitudinal sampling in Z+j @ 13.6TeV:F®™V, LOPS, inclusive
3 MC truth 30 1 MC truth
e 0 rew. with 7= 3 reweighted with PV
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— Warmup training gives better results
Initial conditions of the LO+PS learning is set by LO learning

NB: LO+PS is better reproduced than LO (less /i, < 0) — mitigation effect?
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Summary - Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks

/ Theory
@ i, is an approximation of 1, relying only on physical inputs
Use wide neural network

o Given a /unpolarised sample
fi, allows to tag/reweight longitudinally-polarised events

o Can be used in /theoretical calculations
fL extracted to be compared to theory predictions
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Discussion

e Validity of the method
e Training inclusive, to be used within phase-space
out-of-support extrapolation possible?
e One training per process at a given energy
Applicable at different energy?
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Discussion

e Validity of the method
e Training inclusive, to be used within phase-space
out-of-support extrapolation possible?
e One training per process at a given energy
Applicable at different energy?

@ Error propagation

e training statistics: inferred by training with different data sets
o theory: scale variation (ratio — small)
e experimental errors: training with pseudo data
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Discussion

e Validity of the method

e Training inclusive, to be used within phase-space
out-of-support extrapolation possible?

e One training per process at a given energy
Applicable at different energy?

@ Error propagation
e training statistics: inferred by training with different data sets
o theory: scale variation (ratio — small)
e experimental errors: training with pseudo data
@ Model independence
Any model can be used e.g. EFT or simplified models
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Outlook

Natural extensions

@ Extension of the method beyond LO
NLO QCD first

@ Test on multi-boson processes
di-boson, tri-boson, vector-boson scattering

@ Application to other problems (castable into ratios)
irreducible backgrounds: ttbb, vector-boson scattering, ...
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Data Theory

Machine Learning

( Precision test )
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Conclusion

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]
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Conclusion

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]

@ Decisive information for SM tests
— Precision programme at the LHC

@ Crucial interplay between theory and experiment
> Big impact on physics results
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Conclusion

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]

@ Decisive information for SM tests
— Precision programme at the LHC

@ Crucial interplay between theory and experiment
> Big impact on physics results

Thank you
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Back-up slides

BACK-UP
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