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SMP-15-011Z 13 TeV (Z) = 5.6e+07 fb  2 fb 1
PRL 112 (2014) 191802Z 8 TeV (Z) = 3.4e+07 fb  18 pb 1
JHEP 10 (2011) 132Z 7 TeV (Z) = 2.9e+07 fb  36 pb 1
SMP-15-004W 13 TeV (W) = 1.8e+08 fb  43 pb 1
PRL 112 (2014) 191802W 8 TeV (W) = 1.1e+08 fb  18 pb 1
JHEP 10 (2011) 132W 7 TeV (W) = 9.5e+07 fb  36 pb 1

CMS preliminary 18 pb 1 - 138 fb 1 (7,8,13 TeV)
Overview of CMS cross section results

Jan 2022Measured cross sections and exclusion limits at 95% C.L.
See here for all cross section summary plots

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty
Light colored bars: 7 TeV, Medium bars: 8 TeV, Dark bars: 13 TeV
Black bar theory prediction
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EPJC 81 (2021) 200ZZ 13 TeV (ZZ) = 1.7e+04 fb  137 fb 1
PLB 740 (2015) 250ZZ 8 TeV (ZZ) = 7.7e+03 fb  20 fb 1
JHEP 01 (2013) 063ZZ 7 TeV (ZZ) = 6.2e+03 fb  5 fb 1
Submitted to JHEPWZ 13 TeV (WZ) = 5.1e+04 fb  137 fb 1
EPJC 77 (2017) 236WZ 8 TeV (WZ) = 2.4e+04 fb  20 fb 1
EPJC 77 (2017) 236WZ 7 TeV (WZ) = 2e+04 fb  5 fb 1
PRD 102 092001 (2020)WW 13 TeV (WW) = 1.2e+05 fb  36 fb 1
EPJC 76 (2016) 401WW 8 TeV (WW) = 6e+04 fb  19 fb 1
EPJC 73 (2013) 2610WW 7 TeV (WW) = 5.2e+04 fb  5 fb 1
JHEP 04 (2015) 164Z 8 TeV (Z ) = 1.9e+05 fb  20 fb 1
PRD 89 (2014) 092005Z 7 TeV (Z ) = 1.6e+05 fb  5 fb 1
PRL 126 252002 (2021)W 13 TeV (W ) = 1.4e+05 fb  137 fb 1
PRD 89 (2014) 092005W 7 TeV (W ) = 3.4e+05 fb  5 fb 1
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JHEP 10 (2021) 174Z 13 TeV (Z ) = 5.4 fb  19 fb 1
JHEP 10 (2017) 072Z 8 TeV (Z ) = 13 fb  19 fb 1
JHEP 10 (2021) 174W 13 TeV (W ) = 14 fb  19 fb 1
JHEP 10 (2017) 072W 8 TeV (W ) = 4.9 fb  19 fb 1
PRD 90 032008 (2014)WV 8 TeV (WV ) < 3.1e+02 fb  19 fb 1
PRL 125 151802 (2020)ZZZ 13 TeV (ZZZ) < 2e+02 fb  137 fb 1
PRL 125 151802 (2020)WZZ 13 TeV (WZZ) = 2e+02 fb  137 fb 1
PRL 125 151802 (2020)WWZ 13 TeV (WWZ) = 3e+02 fb  137 fb 1
PRL 125 151802 (2020)WWW 13 TeV (WWW) = 5.9e+02 fb  137 fb 1
PRL 125 151802 (2020)VVV 13 TeV (VVV) = 1e+03 fb  137 fb 1
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PLB 812 (2020) 135992EW qqZZ 13 TeV (EW qqZZ) = 0.33 fb  137 fb 1
PLB 809 (2020) 135710EW qqWZ 13 TeV (EW qqWZ) = 1.8 fb  137 fb 1
PRD 104 072001 (2021)EW qqZ 13 TeV (EW qqZ ) = 5.2 fb  36 fb 1
PLB 770 (2017) 380EW qqZ 8 TeV (EW qqZ ) = 1.9 fb  20 fb 1
PRL 120 081801 (2018)EW ss WW 13 TeV (EW ss WW) = 4 fb  137 fb 1
PRL 114 051801 (2015)EW ss WW 8 TeV (EW ss WW) = 4 fb  19 fb 1
SMP-21-001EW os WW 13 TeV (EW os WW) = 10 fb  138 fb 1
PLB 811 (2020) 135988EW qqW 13 TeV (EW qqW ) = 20 fb  36 fb 1
JHEP 06 (2017) 106EW qqW 8 TeV (EW qqW ) = 11 fb  20 fb 1
JHEP 08 (2016) 119ex. WW8 TeV (ex. WW) = 22 fb  20 fb 1
Submitted to PLBEW WV 13 TeV (EW WV) = 1.9e+03 fb  138 fb 1
EPJC 78 (2018) 589VBF Z 13 TeV (VBF Z) = 5.3e+02 fb  36 fb 1
EPJC 75 (2015) 66VBF Z 8 TeV (VBF Z) = 1.7e+02 fb  20 fb 1
JHEP 10 (2013) 101VBF Z 7 TeV (VBF Z) = 1.5e+02 fb  5 fb 1
EPJC 80 (2020) 43VBF W 13 TeV (VBF W) = 6.2e+03 fb  36 fb 1
JHEP 11 (2016) 147VBF W 8 TeV (VBF W) = 4.2e+02 fb  19 fb 1
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EPJC 80 (2020) 75tttt 13 TeV (tttt) = 13 fb  137 fb 1
JHEP 08 (2018) 011ttW 13 TeV (ttW) = 7.7e+02 fb  36 fb 1
JHEP 01 (2016) 096ttW 8 TeV (ttW) = 3.8e+02 fb  20 fb 1
PRL 121 221802 (2018)t 13 TeV (t ) = 1.1e+03 fb  36 fb 1
JHEP 03 (2020) 056ttZ 13 TeV (ttZ) = 9.5e+02 fb  78 fb 1
JHEP 01 (2016) 096ttZ 8 TeV (ttZ) = 2.4e+02 fb  20 fb 1
PRL 110 (2013) 172002ttZ 7 TeV (ttZ) = 2.8e+02 fb  5 fb 1
Submitted to JHEPtZq 13 TeV (tZq) = 8.7e+02 fb  138 fb 1
JHEP 07 (2017) 003tZq 8 TeV (tZq) = 2.9e+02 fb  20 fb 1
Submitted to JHEPtt 13 TeV (tt ) = 1.2e+03 fb  138 fb 1
JHEP 09 (2016) 027ts ch 8 TeV (ts ch) = 1.3e+04 fb  20 fb 1
JHEP 10 (2018) 117tW 13 TeV (tW) = 6.3e+04 fb  36 fb 1
PRL 112 (2014) 231802tW 8 TeV (tW) = 2.3e+04 fb  20 fb 1
PRL 110 (2013) 022003tW 7 TeV (tW) = 1.6e+04 fb  5 fb 1
PLB 72 (2017) 752tt ch 13 TeV (tt ch) = 2.3e+05 fb  2 fb 1
JHEP 06 (2014) 090tt ch 8 TeV (tt ch) = 8.4e+04 fb  5 fb 1
JHEP 12 (2012) 035tt ch 7 TeV (tt ch) = 6.7e+04 fb  2 fb 1
Accepted by PRDtt 13 TeV (tt) = 7.9e+05 fb  137 fb 1
JHEP 08 (2016) 029tt 8 TeV (tt) = 2.4e+05 fb  20 fb 1
JHEP 08 (2016) 029tt 7 TeV (tt) = 1.7e+05 fb  5 fb 1

1.0e-01 1.0e+01 1.0e+03 1.0e+05 1.0e+07 1.0e+09
 [fb]

H
ig

gs

HIG-20-005HH 13 TeV (HH ) < 1.2e+02 fb  138 fb 1
EPJC 81 (2021) 378tH 13 TeV (tH) = 5.1e+02 fb  137 fb 1
HIG-19-005ttH 13 TeV (ttH) = 5.8e+02 fb  137 fb 1
EPJC 75 (2015) 212ttH 8 TeV (ttH) = 4.2e+02 fb  20 fb 1
HIG-19-005ZH 13 TeV (ZH) = 8.7e+02 fb  137 fb 1
HIG-19-005WH 13 TeV (WH) = 2e+03 fb  137 fb 1
EPJC 75 (2015) 212VH 8 TeV (VH) = 1.1e+03 fb  20 fb 1
HIG-19-005VBF qqH 13 TeV (VBF qqH) = 2.8e+03 fb  137 fb 1
EPJC 75 (2015) 212VBF qqH 8 TeV (VBF qqH) = 1.6e+03 fb  20 fb 1
EPJC 75 (2015) 212VBF qqH 7 TeV (VBF qqH) = 2.2e+03 fb  5 fb 1
HIG-19-005ggH 13 TeV (ggH) = 5.1e+04 fb  137 fb 1
EPJC 75 (2015) 212ggH 8 TeV (ggH) = 1.5e+04 fb  20 fb 1
EPJC 75 (2015) 212ggH 7 TeV (ggH) = 1.6e+04 fb  5 fb 1

Triumph of the Standard Model ...
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Motivation for polarisation studies

Polarisation of gauge bosons (W and Z) related to Electroweak symmetry breaking
→ longitudinal polarisation
“the Higgs mechanism is the conversion of Goldstone modes into the longitudinal polarisation mode of

massive weak bosons” [Pelliccioli]

→ probe of new physics/extended Higgs sector
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Definition

Master formula

∣∣∣∣MNWA(Zj)

∣∣∣∣2 = π

MZΓZ

∣∣∣∣∑
h∈Λ

Mh(pp → Zj) · Mh

(
Z → ℓ+ℓ−

) ∣∣∣∣2
with Λ = {+1,−1} (Transverse), 0 (Longitudinal)

Unpolarised cross section σunp. ∼ |MNWA|2 (experimentally measured)

Polarised cross section: σL ∼ |M0|2 · |Γ0|2

Polarisation fraction: fL = σL/σunp.
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“Measuring polarisation”

No measurement of polarisation: template method
→ extraction of parameters based on theory input

Shortcomings about polarisation
extraction

" Polarisation only defined for on-shell
bosons
" Only the unpolarised prediction is
observed
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Experimental analyses

WZ: [ATLAS; 1902.05759, 2211.09435], [CMS; 2110.11231]

Vector-boson scattering W±W±
[CMS; 2009.09429]

[CMS; 2009.09429]
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Discussion

Drawbacks of the template method

Restricted to given observables

Unclear what are the optimal
observables

Interpretation at the integrated level

Typical in experiment:

→ NN/BDT on samples of longitudinally
polarised vs. background samples

Drawbacks:

Difficult learning
→ large samples needed

Ill defined discrimination between
signal and background
→ Indirect link to polarisation definition

Unclear what to feed
(empirical and high-level variables)
→ possibly not optimal
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New idea for polarisation extraction:
Amplitude-assisted tagging of longitudinally polarised bosons
using wide neural networks

Theory Experiment

Matrix element LHC collision LHC collision+Parton shower

r̃L r̃′L

2
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General idea

Use amplitude to extract theory parameters / pseudo observables from data
→ requires the use of neural network [Grossi, Incudini, MP, Pelliccioli; 2306.07726]

Advantages

Restricted to given observables → No observable

Unclear what are the optimal observables → optimal by definition

Interpretation at the integrated level
→ event-by-event interpretation (fully differential)

" General method usable for other problems
→ Alternative approaches:

matrix-element method [Kondo; J. Phys. Soc. Jap. 57 (1988) 4126-4140 / 60 (1991) 836–844.]

optimal-observable method [Diehl, Nachtmann; Z. Phys. C 62 (1994) 397-412, hep-ph/9603207], [Janot; 1503.01325]

MELA (Matrix Element Likelihood Approach) [Gao, Gritsan, Melnikov, Schulze, et al.; 1001.3396, 1208.4018,1309.4819, 1606.03107]
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Simple observation

fL(O) =
dσL
dO

/
dσunp
dO

with σ ∝
∫

dΦ|M|2

→ At the event-by-event/phase-space–point level, at leading order (LO), equivalent to

rL =
|ML|2

|M|2

" rL is the probability for an event to be longitudinally polarised

NB:

All information about longitudinal polarisation contained in rL

If rL was a physical observable,
only its measurement would be required to extract polarisation
or
Polarised predictions obtainable by reweighting unpolarised ones with rL
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Application

Z+j production at the LHC at
√
s = 13.6TeV

MadGraph5 aMC@NLO for checks
[Alwall, et al.; 1405.0301], [Buarque Franzosi, Mattelaer, Ruiz, Shil; 1912.01725]

Recola [Actis et al.; 1605.01090] for rL computation

Pythia [Sjöstrand et al.; 1410.3012] for PS

→ Generation set-up

pT,j > 10GeV , |yj| < 5, and 76GeV < Mµ+µ− < 106GeV

→ Inclusive set-up

pT,j > 20GeV , |yj| < 4, and 81GeV < Mµ+µ− < 101GeV

" No cuts on Z-boson decay products
→ Fiducial set-up = Inclusive set-up +

pT,µ± > 20GeV and |yµ± | < 2.7
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Polarisation weights in Z+j @ 13.6TeV: MC truth, generation level
L
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b]

Longitudinal signal in Z+j @ 13.6TeV: r MC
L  reweighting, inclusive

MC truth, LO
rew. with r MC

L , LO
MC truth, LOPS
rew. with r MC

L , LOPS

0.5 1.0 1.5 2.0 2.5 3.0 3.5
|yj|
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rM
C

L
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 / 

M
C-
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th LO

LOPS

NB: For LO+PS, reweighting done on events before PS
→ assumption: polarisation is not influenced by PS

" rL requires knowledge of all momenta (initial and final)
" rL requires knowledge of the partonic process and the PDF: (qg → q, qq̄ → g , ...)
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Solution → Wide neural networks

IN:
Training with Monte Carlo events
→ Truth

Parameter to learn: rL

Input: all accessible information
(leptons, jets, ...)
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OUT:
Result: r̃L
→ Proxy of rL
→ Relies only on accessible information
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Longitudinal signal in Z+j @ 13.6TeV: r MC
L  vs rDNN
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→ Method is working at LO
at per-cent level
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LO+PS using LO training
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" Failing!
(describing PS corrections instead
of polarisation)
→ Retraining ...
... with rL computed before PS!
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LO+PS with warm-up
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→ Warmup training gives better results
Initial conditions of the LO+PS learning is set by LO learning

NB: LO+PS is better reproduced than LO (less r̃L < 0) → mitigation effect?
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Initial conditions of the LO+PS learning is set by LO learning

NB: LO+PS is better reproduced than LO (less r̃L < 0) → mitigation effect?
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Summary - Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks

Experiment / Theory

r̃L is an approximation of rL relying only on physical inputs
→ Use wide neural network

Given a set of data/unpolarised sample
→ r̃L allows to tag/reweight longitudinally-polarised events

Can be used in experimental analysis/theoretical calculations
→ fL extracted to be compared to theory predictions
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Discussion

Validity of the method

Training inclusive, to be used within phase-space
→ out-of-support extrapolation possible?
One training per process at a given energy
→ Applicable at different energy?

Error propagation

training statistics: inferred by training with different data sets
theory: scale variation (ratio → small)
experimental errors: training with pseudo data

Model independence
→ Any model can be used e.g. EFT or simplified models
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Outlook

Natural extensions

Extension of the method beyond LO
→ NLO QCD first

Test on multi-boson processes
→ di-boson, tri-boson, vector-boson scattering

Application to other problems (castable into ratios)
→ irreducible backgrounds: ttbb, vector-boson scattering, ...
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Data Theory

Machine Learning

Precision test

2
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Conclusion

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]

Decisive information for SM tests
→ Precision programme at the LHC

Crucial interplay between theory and experiment
→ Big impact on physics results

Thank you
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Back-up slides

BACK-UP
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