Machine-learning methods for polarisation tagging

Mathieu PELLEN

University of Freiburg

COMETA workshop on vector-boson polarisations Toulouse, France

23rd of September 2024

• Triumph of the Standard Model ...

Mathieu PELLEN

Machine-learning methods for polarisation tagging

2/21

Motivation for polarisation studies

 $\bullet\,$ Polarisation of gauge bosons (W and Z) related to Electroweak symmetry breaking $\rightarrow\,$ longitudinal polarisation

"the Higgs mechanism is the conversion of Goldstone modes into the longitudinal polarisation mode of massive weak bosons" [Pelliccioli]

 \rightarrow probe of new physics/extended Higgs sector

Master formula

$$\mathcal{M}^{\text{NWA}}(\text{Zj})\Big|^{2} = \frac{\pi}{M_{Z}\Gamma_{Z}}\Big|\sum_{h\in\Lambda}\mathcal{M}_{h}(\text{pp}\rightarrow\text{Zj})\cdot\mathcal{M}_{h}\left(\text{Z}\rightarrow\ell^{+}\ell^{-}\right)\Big|^{2}$$

with $\Lambda = \{+1, -1\}$ (Transverse), 0 (Longitudinal)

Master formula

$$\left|\mathcal{M}^{\text{NWA}}(\text{Zj})\right|^{2} = \frac{\pi}{M_{Z}\Gamma_{Z}} \left|\sum_{h\in\Lambda}\mathcal{M}_{h}(\text{pp}\rightarrow\text{Zj})\cdot\mathcal{M}_{h}\left(\text{Z}\rightarrow\ell^{+}\ell^{-}\right)\right|^{2}$$

with $\Lambda = \{+1, -1\}$ (Transverse), 0 (Longitudinal)

- Unpolarised cross section $\sigma_{\rm unp.} \sim |{\cal M}^{\rm NWA}|^2$ (experimentally measured)
- Polarised cross section: $\sigma_{\rm L} \sim |\mathcal{M}_0|^2 \cdot |\Gamma_0|^2$
- Polarisation fraction: $f_{
 m L}=\sigma_{
 m L}/\sigma_{
 m unp.}$

"Measuring polarisation"

No measurement of polarisation: *template method* → extraction of parameters based on theory input

"Measuring polarisation"

No measurement of polarisation: *template method* → extraction of parameters based on theory input

Shortcomings about polarisation extraction

- ▲ Polarisation only defined for on-shell bosons
- $\underline{\wedge}$ Only the unpolarised prediction is observed

Experimental analyses

- WZ: [ATLAS; 1902.05759, 2211.09435], [CMS; 2110.11231]
- Vector-boson scattering $W^{\pm}W^{\pm}$ [CMS; 2009.09429]

Process	σB (fb)	Theoretical prediction (fb)
$W^{\pm}_L W^{\pm}_L$	$0.32\substack{+0.42 \\ -0.40}$	0.44 ± 0.05
$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$	$3.06\substack{+0.51\\-0.48}$	3.13 ± 0.35
$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$	$1.20\substack{+0.56\\-0.53}$	1.63 ± 0.18
$W^\pm_T W^\pm_T$	$2.11\substack{+0.49 \\ -0.47}$	1.94 ± 0.21

[CMS; 2009.09429]

Mathieu PELLEN

Drawbacks of the template method

- Restricted to given observables
- Unclear what are the *optimal* observables
- Interpretation at the integrated level

Drawbacks of the template method

- Restricted to given observables
- Unclear what are the *optimal* observables
- Interpretation at the integrated level

Typical in experiment:

 \rightarrow NN/BDT on samples of longitudinally polarised vs. background samples

Drawbacks:

- Difficult learning
 → large samples needed
- Ill defined discrimination between signal and background
 - \rightarrow Indirect link to polarisation definition
- Unclear what to feed (empirical and high-level variables)
 → possibly not optimal

• New idea for polarisation extraction:

Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks

• New idea for polarisation extraction:

Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks

General idea

Use amplitude to extract theory parameters / pseudo observables from data \rightarrow requires the use of neural network [Grossi, Incudini, MP, Pelliccioli; 2306.07726]

General idea

Use amplitude to extract theory parameters / pseudo observables from data \rightarrow requires the use of neural network [Grossi, Incudini, MP, Pelliccioli; 2306.07726]

Advantages

- Restricted to given observables \rightarrow No observable
- Unclear what are the optimal observables \rightarrow optimal by definition
- Interpretation at the integrated level
 - \rightarrow event-by-event interpretation (fully differential)

 $\underline{\wedge}$ General method usable for other problems

General idea

Use amplitude to extract theory parameters / pseudo observables from data \rightarrow requires the use of neural network [Grossi, Incudini, MP, Pelliccioli; 2306.07726]

Advantages

- Restricted to given observables \rightarrow No observable
- Unclear what are the optimal observables \rightarrow optimal by definition
- Interpretation at the integrated level
 - \rightarrow event-by-event interpretation (fully differential)
- ▲ General method usable for other problems
- \rightarrow Alternative approaches:
 - matrix-element method [Kondo; J. Phys. Soc. Jap. 57 (1988) 4126-4140 / 60 (1991) 836-844.]
 - optimal-observable method [Diehl, Nachtmann; Z. Phys. C 62 (1994) 397-412, hep-ph/9603207], [Janot; 1503.01325]
 - MELA (Matrix Element Likelihood Approach) [Gao, Gritsan, Melnikov, Schulze, et al.; 1001.3396, 1208.4018,1309.4819, 1606.03107]

Simple observation

$$f_{
m L}(\mathcal{O}) = rac{{
m d}\sigma_{
m L}}{{
m d}\mathcal{O}} \Big/ rac{{
m d}\sigma_{
m unp}}{{
m d}\mathcal{O}} \quad {
m with} \quad \sigma \propto \int {
m d}\Phi |\mathcal{M}|^2 \; .$$

 \rightarrow At the event-by-event/phase-space-point level, at leading order (LO), equivalent to

$$r_{
m L} = rac{\left|\mathcal{M}_{
m L}
ight|^2}{\left|\mathcal{M}
ight|^2}$$

 $\underline{\wedge}$ r_{L} is the probability for an event to be longitudinally polarised

Simple observation

$$f_{
m L}(\mathcal{O}) = rac{{
m d}\sigma_{
m L}}{{
m d}\mathcal{O}} \Big/ rac{{
m d}\sigma_{
m unp}}{{
m d}\mathcal{O}} \quad {
m with} \quad \sigma \propto \int {
m d}\Phi |\mathcal{M}|^2 \; .$$

 \rightarrow At the event-by-event/phase-space-point level, at leading order (LO), equivalent to

$$r_{
m L} = rac{\left|\mathcal{M}_{
m L}
ight|^2}{\left|\mathcal{M}
ight|^2}$$

 $\underline{\land}$ r_{L} is the probability for an event to be longitudinally polarised

<u>NB:</u>

- All information about longitudinal polarisation contained in $r_{\rm L}$
- If $r_{\rm L}$ was a physical observable, only its measurement would be required to extract polarisation or

Polarised predictions obtainable by reweighting unpolarised ones with $r_{\rm L}$

Mathieu PELLEN

Machine-learning methods for polarisation tagging

Application

- Z+j production at the LHC at $\sqrt{s}=13.6\,{\rm TeV}$
- MADGRAPH5_AMC@NLO for checks

[Alwall, et al.; 1405.0301], [Buarque Franzosi, Mattelaer, Ruiz, Shil; 1912.01725]

- RECOLA [Actis et al.; 1605.01090] for r_{L} computation
- $\bullet~P{\rm YTHIA}$ [Sjöstrand et al.; 1410.3012] for PS

Application

• Z+j production at the LHC at $\sqrt{s}=13.6\,{\rm TeV}$

MADGRAPH5_AMC@NLO for checks
 [Alwall, et al.; 1405.0301], [Buarque Franzosi, Mattelaer, Ruiz, Shil; 1912.01725]

- RECOLA [Actis et al.; 1605.01090] for r. computation
- $\bullet~PYTHIA~$ [Sjöstrand et al.; 1410.3012] for PS
- \rightarrow Generation set-up

 $p_{T,j} > 10~{
m GeV}\,, \qquad |y_j| < 5, \qquad {
m and} \qquad 76~{
m GeV} < M_{\mu^+\mu^-} < 106~{
m GeV}$ ightarrow Inclusive set-up

 $p_{{\sf T},{\sf j}} > 20\,{
m GeV}\,, \qquad |y_{\sf j}| < 4, \qquad {
m and} \qquad 81\,{
m GeV} < M_{\mu^+\mu^-} < 101\,{
m GeV}$

▲ No cuts on Z-boson decay products

 \rightarrow *Fiducial* set-up = *Inclusive* set-up +

 $p_{T,\mu^{\pm}} > 20 \,\text{GeV} \qquad \text{and} \qquad |y_{\mu^{\pm}}| < 2.7$

<u>NB:</u> For LO+PS, reweighting done on events before PS \rightarrow assumption: polarisation is not influenced by PS

<u>NB:</u> For LO+PS, reweighting done on events before PS \rightarrow assumption: polarisation is not influenced by PS

 $\land r_{\rm L}$ requires knowledge of all momenta (initial and final) $\land r_{\rm L}$ requires knowledge of the partonic process and the PDF: $(qg \rightarrow q, q\bar{q} \rightarrow g, ...)$

Mathieu PELLEN

Solution \rightarrow <u>Wide neural networks</u>

<u>IN:</u>

- Training with Monte Carlo events
 → Truth
- Parameter to learn: $r_{\rm L}$
- Input: all accessible information (leptons, jets, ...)

<u>OUT:</u>

- Result: $ilde{r}_{
 m L}$
 - ightarrow Proxy of $r_{
 m L}$
 - \rightarrow Relies only on accessible information

LO

 \rightarrow Method is working at LO at per-cent level

LO+PS using LO training

- ▲ Failing! (describing PS corrections instead of polarisation) → Retraining ...
- ... with $r_{\rm L}$ computed before PS!

Mathieu PELLEN

LO+PS with warm-up

 \rightarrow Warmup training gives better results Initial conditions of the LO+PS learning is set by LO learning

LO+PS with warm-up

 \rightarrow Warmup training gives better results Initial conditions of the LO+PS learning is set by LO learning

 $\underline{\sf NB:}\ {\sf LO+PS}$ is better reproduced than LO (less ${\tilde r}_{\rm L}<0) \rightarrow$ mitigation effect?

Mathieu PELLEN

Summary - Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks

Experiment / **Theory**

- $\tilde{r}_{\rm L}$ is an approximation of $r_{\rm L}$ relying only on physical inputs
 - \rightarrow Use wide neural network
- Given a set of data/unpolarised sample
 - ightarrow $\widetilde{r}_{
 m L}$ allows to tag/reweight longitudinally-polarised events
- Can be used in experimental analysis/theoretical calculations
 - \rightarrow f_L extracted to be compared to theory predictions

Discussion

- Validity of the method
 - Training inclusive, to be used within phase-space
 → out-of-support extrapolation possible?
 - One training per process at a given energy
 - \rightarrow Applicable at different energy?

Discussion

- Validity of the method
 - Training inclusive, to be used within phase-space
 - \rightarrow out-of-support extrapolation possible?
 - One training per process at a given energy
 - \rightarrow Applicable at different energy?
- Error propagation
 - training statistics: inferred by training with different data sets
 - theory: scale variation (ratio \rightarrow small)
 - experimental errors: training with pseudo data

Discussion

- Validity of the method
 - Training inclusive, to be used within phase-space
 - \rightarrow out-of-support extrapolation possible?
 - One training per process at a given energy
 - \rightarrow Applicable at different energy?
- Error propagation
 - training statistics: inferred by training with different data sets
 - theory: scale variation (ratio \rightarrow small)
 - experimental errors: training with pseudo data
- Model independence

 \rightarrow Any model can be used *e.g.* EFT or simplified models

Natural extensions

- Extension of the method beyond LO \rightarrow NLO QCD first
- Test on multi-boson processes
 - \rightarrow di-boson, tri-boson, vector-boson scattering
- Application to other problems (castable into ratios)
 - \rightarrow irreducible backgrounds: ttbb, vector-boson scattering, ...

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]

- Decisive information for SM tests
 - \rightarrow Precision programme at the LHC
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

New idea for extraction of boson polarisation:

[Grossi, Incudini, MP, Pelliccioli; 2306.07726]

- Decisive information for SM tests
 - \rightarrow Precision programme at the LHC
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

Thank you

BACK-UP