

Shenn

Mareen Hoppe¹, Marek Schönherr², Frank Siegert¹

¹ Institute of Nuclear and Particle Physics, Technische Universität Dresden ² Institute for Particle Physics Phenomenology, Durham University

University

Polanized cross sections vector boson production with

COMETA polarisation workshop Toulouse, September 23, 2024

The SHERPA event generator

New major release SHERPA 3.0.0 since July!

[E. Bothmann et al. 2019]

- two tree-level built-in matrix element generators: COMIX, AMEGIC
- higher order QCD effects: matching via S-MC@NLO, multi-jet merging via CKKW-L algorithm
- approximate NLO EW effects: EWvirt & EW Sudakov
- two parton showers: CSS, DIRE
- cluster fragmentation model
- hadron- and tau-decay module
- multiple interaction simulation á la PYTHIA
- higher-order QED effects via YFS resummation
- interfaces to

)	OpenLoops	
)	Recola	
)	GoSam	

0	NICEIN
0	BlackHa
0	MadLoo

UFO
PYTHIA 8

RIVET 3 & 4

The SHERPA event generator

New major release SHERPA 3.0.0 since July!

[E. Bothmann et al. 2019]

- two tree-level built-in matrix element generators: COMIX, AMEGIC
- higher order QCD effects: matching via S-MC@NLO, multi-jet merging via CKKW-L algorithm
- approximate NLO EW effects: EWvirt & EW Sudakov
- two parton showers: CSS, DIRE
- cluster fragmentation model
- hadron- and tau-decay module
- multiple interaction simulation á la PYTHIA
- higher-order QED effects via YFS resummation

interfaces to

0	OpenLoops	
0	Recola	
0	GoSam	

0	
0	BlackHa
0	MadLoo

UFO
 PYTHIA 8

RIVET 3 & 4

SHERPA's polarization framework

Design principles & features

Polanized cross sections for intermediate particles

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = f_L \frac{\mathrm{d}\sigma_L}{\mathrm{d}X} + f_R \frac{\mathrm{d}\sigma_R}{\mathrm{d}X} + f_0 \frac{\mathrm{d}\sigma_0}{\mathrm{d}X} \left(+ f_{int.} \frac{\mathrm{d}\sigma_{int.}}{\mathrm{d}X} \right)$$

Polarization for intermediate particles

- completeness relation

 $\left(-g^{\mu
u}+rac{q^{\mu}q^{
u}}{m_V^2}
ight)=\sum_{\lambda=1}^4arepsilon^{\mu}(q,\,\lambda)arepsilon^{*
u}(q,\,\lambda)$

 lead to interferences between different polarisations

Polarization Casis• helicity basis
$$\varepsilon_{\pm}^{\mu}(q) = \frac{e^{\mp i\phi}}{\sqrt{2}}(0, -\cos\theta\cos\phi \pm i\sin\phi, -\cos\theta\sin\phi \mp i\cos\phi, \sin\theta)$$
 $\varepsilon_{0}^{\mu}(q) = \frac{q^{0}}{m} \left(\frac{|\vec{q}|}{q^{0}}, \cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta\right)$ • frame dependent!

Separation of polarization

- amplitude needs to factorize: production \otimes propagator \otimes decay
- problem: non-resonant diagrams
 - \rightarrow no polarisation definition, but necessary for gauge invariance
- **solution:** appropriate approximations gauge invariant options:
 - Pole Approximation ((D)PA)
 - Narrow-Width Approximation (NWA)

$$rac{1}{\left(q^2-m_V^2
ight)^2+\Gamma_V^2m_V^2}
ightarrow rac{\pi\deltaig(q^2-m_V^2ig)}{\Gamma_Vm_V}$$

The narrow-width approximation

- **PROBLEM:** spin correlations
- → solution: spin-correlation algorithm [P. Richardson 2001]

Mareen Hoppe (TU Dresden)

COMETA Polarisation Workshop 2024 - Toulouse - September 24, 2024

Calculation of polarized cross sections

[MH, M. Schönherr, F. Siegert 2023]

- algorithm for polarized cross sections:
 - simulation essentially unpolarized
 - polarization fractions calculated on top
 - starting point: production amplitude tensor & decay matrices from spin correlation algorithm

Key part of the polarization framework: Transformation of the matrix elements

- two ways to change polarization definition in matrix elements:
 - a priori: change polarization definition directly in matrix element generator
 - a posteriori: transformation of calculated production tensor, decay matrices
- change of basis = basis transformation of polarization vectors

Calculation of polarized cross sections

[MH, M. Schönherr, F. Siegert 2023]

- algorithm for polarized cross sections:
 - simulation essentially unpolarized
 - polarization fractions calculated on top
 - starting point: production amplitude tensor & decay matrices from spin correlation algorithm

fully differential (per event) polarization fractions for all polarization combinations & interference

polarised contributions, incoherent sum

interference

 $+\sum \mathcal{M}_{\lambda}^{\mathcal{F}}\mathcal{M}_{\lambda'}^{*\mathcal{F}},$

different polarization definitions in one simulation run

- laboratory frame
- center of mass frame of arbitrary combination of initial- / final state particles
- parton-parton frame
- easily extendable, if necessary

-scattening 119+UB

 $p_{\perp,WW}$ [GeV]

Intenference templates

interference not always negligible

SHERPA's polarization framework

Higher order effects & BSM

Polarized cross sections matched to PS - MC@NLO

idea MC@NLO: double counting eliminated by subtraction of the shower contribution at fixed order from contributions of the hard process at higher orders

$$\sigma_{\mathrm{MC@NLO}}^{\mathrm{NLO}} = \underbrace{\int \mathrm{d}\tilde{\Phi}_n \bar{B}_n^{\mathcal{A}}(\tilde{\Phi}_n) \Big[\bar{\Delta}^{\mathcal{A}}(t_0) + \int_{t_0} \mathrm{d}\tilde{\Phi}_1 \frac{D_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}{B_n(\tilde{\Phi}_n)} \bar{\Delta}^{\mathcal{A}}(t) \Big]}_{=:\sigma_{\mathbb{H}}} + \underbrace{\int \mathrm{d}\tilde{\Phi}_{n+1} H_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}_{=:\sigma_{\mathbb{H}}}$$

Mareen Hoppe (TU Dresden)

[S. Höche et al. 2012]

nLO+PS vs. full fixed NLO -WZ-Diboson production

Comparison with NLO QCD fixed order calculation [A. Denner & G. Pelliccioli 2021]

W2 Diboson production - Rapidity of the W-lepton (hk) NLO QCD calculation fixed order A. Denner & G. Pelliccioli 2021

Reproduces even non-trivial NLO effects!

nLO+PS (Shenpa) vs. full NLO+PS (POWHEG+PYTHIA)

Literature: [G. Pelliccioli, G. Zanderighi 2023]

WZ production [G. Pelliccioli, G. Zanderighi 2023]: similar agreement compared to NLO QCD+PS

ZZ-Production

	$\sigma_{\rm NLO+PS}$ [fb]	Fraction [%]	$\sigma_{\rm nLO+PS}$ [fb]	Fraction [%]	$\frac{\text{nLOPS}}{\text{NLOPS}}$ –	_{- 1} [%]
					XS	Frac
unpol	14.02(1)	100	14.017(17)	100	-0.0	
LL	0.819(1)	5.84	0.8404(12)	5.996(11)	+2.6	+2.7
LT + TL	3.565(3)	25.43	3.6177(39)	25.81(4)	+1.5	+1.5
ΤΤ	9.47(1)	67.52	9.370(14)	66.85(13)	-1.1	-1.0
int	0.171	1.28	0.1886(24)	1.345(17)	+10.3	+5.1

COMETA Polarisation Workshop 2024 - Toulouse - September 24, 2024

Multi-leg menging

WZ-Diboson production

- small merging scale crucial
- no limitation in combination with polarization framework

VB polarization beyond the Standard Model

- UFO format: standardized format for BSM models for simple import in event generators
- SHERPA UFO interface: [S. Höche et al. 2014]
 - Lorentz & color structures built automatically
 - automatic decay tables / chains
 - handling of intermediate resonances
 - spin correlations
 - effective field theories
 - form factors
- combination with polarization framework via intermediate resonances suite

W+W+jj SMEFT dim-6

Polarization framework in real life

Available processes & current limitations

- all processes with intermediate vector bosons that are possible with SHERPA's tree-level matrix element generators
- up to nLO QCD in production process
- leptonic- as well as hadronic decays
- extension to spin-½ particles easily possible

Limitations

- no loop-induced processes
- no higher order effects on decays

Polarized Wy production

[R. Seip CERN-THESIS-2024-086]

	8 24 N	20	
	LO+PS	LO+1j	
f_0	0.1556	0.2196	_
f_+	0.4277	0.3454	
f_{-}	0.4166	0.4349	

sums up to dip in unpolarized result due to radiation amplitude zero effect in $\cos\Theta$ with $\Theta = \measuredangle$ between $\gamma \&$ u in $W\gamma$ rest frame

Huge impact from higher order QCD corrections!

Mareen Hoppe (TU Dresden)

integrated...

Mareen Hoppe (TU Dresden)

COMETA Polarisation Workshop 2024 - Toulouse - September 24, 2024

0

600

m^{IL, MET} [GeV]

Ongoing: Extension to complete NLO QCD / NLO EW

- first step: Extension of SHERPA's Recola interface to get polarized loop-amplitudes
 - transformation to SHERPA's spin basis to use it together with COMIX decay amplitudes
 - implemented spin trafo used
- currently testing first implementation
- first application: loop-induced processes

SHERPA

Ongoing: Usage as polarization tagger

 first proof of concept study: recursion NN trained on polarization fractions in VBS W⁺W⁺jj @LO outperforms classification net [J. A. Neumann CERN-THESIS-2023-346]

Mareen Hoppe (TU Dresden)

Ongoing: Usage as polarization tagger

- now: working on proper polarization tagger trained on polarization weights:
 - starting with Z+jets example like in [M. Grossi et al. 2023] & multi-layer perceptrons in LAB Ο

Mareen Hoppe (TU Dresden)

COMETA Polarisation Workshop 2024 - Toulouse - September 24, 2024

Mareen Hoppe (TU Dresden)

COMETA Polarisation Workshop 2024 - Toulouse - September 24, 2024

Slide 28

Summary and Outlook

https://www.zeppelinschule-speyer.de/ausblick-auf-di e-zeit-nach-pfingsten/ **√** Overview over SHERPA's polarization framework

publicly available since SHERPA 3.0.0beta

✓ Key features:

- all polarized cross sections in one simulation run
- direct calculation of interference between different polarizations
- provide several reference frames
- accuracy up to nLO+PS, multi-leg merging
- no process limitation (for intermediate VBs) beside loop-induced processes
- usable for SM and BSM physics

What comes next ...

- Extension to loop-induced processes
- Extension to NLO QCD and approximate NLO EW
- Application for polarization tagging
- Applications in phenomenological studies: NLO effects to VBS processes, BSM studies, hadronic decays

Summary and Outlook

https://www.zeppelinschule-speyer.de/ausblick-auf-d e-zeit-nach-pfingsten/

V **Overview over SHERPA's polarization framework**

> publicly available since SHERPA 3.0.0beta \bigcirc

Key features: V

- all polarized cross sections in one simulation run Ο
- direct calculation of interference between different polarizations 0
- provide several reference frames 0
- accuracy up to nLO+PS, multi-leg merging 0
- no process limitation (for intermediate VBs) beside loop-induced 0 processes
- usable for SM and BSM physics 0

What comes next ...

- Extension to loop-induced processes
- Thank you for your attention! Extension to NLO QCD and approximate NLO EW
- Application for polarization tagging
- NLO effects to VBS processes, BSM studies, hadronic decays

Spin-Connelation Algorithm

[P. Richardson 2001]

• here only for VB decaying into stable leptons

hard process final state particles & production (2 \rightarrow n) matrix element tensor $|\mathcal{M}^{\mathcal{P}}|^{z}_{\lambda_{1}...\lambda_{n}\lambda'_{1}...\lambda'_{n}}$ choose one outgoing particle A randomly Spin density matrix $ho_{\lambda_j\lambda_j'}(A) = rac{1}{N_
ho} \mathcal{M}^{\mathcal{P}_{\kappa_1\kappa_2;\lambda_1...\lambda_j...\lambda_n}} \mathcal{M}^{\mathcal{P}*}_{\kappa_1\kappa_2;\lambda_1'...\lambda_j'...\lambda_n'} \prod_{i \neq j} \mathcal{D}^i_{\lambda_i\lambda_i'}$ with $\mathcal{D}^i_{\lambda_i\lambda'_i}=rac{1}{n_{hel}}\delta_{\lambda_i\lambda'_i}$ if particle not chosen yet choose decay channel of A according to branching ratios Generate momenta of A's decay products according to $\rho_{\lambda_A \lambda'_A} \mathcal{M}^{\mathcal{D}}_{\lambda_A;\lambda_1...\lambda_n} \mathcal{M}^{\mathcal{D}*}_{\lambda'_A;\lambda_1...\lambda_n}$ all decay products stable $\mathcal{D}_{\lambda_{\mathcal{A}}\lambda_{\mathcal{A}}'} = rac{I}{\mathcal{M}_{\mathcal{D}}} \mathcal{M}^{\mathcal{D}}_{\lambda_{\mathcal{A}};\lambda_{1}...\lambda_{n}} \mathcal{M}^{\mathcal{D}*}_{\lambda_{\mathcal{A}}';\lambda_{1}...\lambda_{n}}$ Calculate A's decay matrix

Mass Smearing Algorithm

- spin correlation algorithm runs on on-shell momenta
- mass smearing performed afterwards
- **1.** Generate off-shell masses for VBs
 - a. determine max. available mass = invariant mass of total mom of VB production FS
 - b. starting with VB with smallest decay width
 - C. dice mass according to Breit-Wigner distribution from [0, totmass]
- 2. Boost final state momenta of production process accordingly
- 3. Boost final state momenta of decay particles accordingly

Guiding principles for 2.+3.

- redistribute E, |p| of the particles while preserving direction of flight in CMS of the FS particles

Basic Usage - 22 production example

Ongoing: Usage as polarization taggen

Mareen Hoppe (TU Dresden)