

Electron Beams

Learn how to make and control electron beams and observe how electrons behave in magnetic fields.

Spokesperson:	
Scientific writer:	
Safety manager:	
Technical Coordinator:	

Lab Activities

Task 1: Make an electron beam.

- Turn all knobs to zero.
- Switch on the device (green main switch).
- Turn on the heating voltage to 6 V. If you don't see a faint (orange) glow at the heating wire after 10 sec, increase the voltage in 1V steps.
- Turn on the acceleration voltage slowly and observe the beam.
 At which voltage does it reach the fluorescent screen? _____V
- Look at the fluorescent screen. Can you find a bright green spot?
- Use the ring magnet (see below) to calibrate the electron beam so it hits the centre of the screen (front view).
- Vary the focusing voltage, until the beam is focused optimally.

Power supply

Ring Magnet

A = Acceleration **F** = Focusing **H** = Heating

Task 2: Control an electron beam (using bar magnets).

Prediction

Think first! What effect would a bar magnet have on the electron beam, when you lead it along the metal ring?

 Mark your predictions for the position of the beam spot with a cross X for the 2 magnet positions below.

Magnet position 1	Student 1	Student 2
	Student 3	Student 4
Magnet position 2	Student 1	Student 2
	Student 3	Student 4

Now try out the 2 positions of the magnet **Observation** and mark your observation with a **circle** \circ on the **same** diagram.

- Did your observations match your predictions?
- Switch everything off when you are done.

1. What is the angle between the **direction of the magnetic field** and the **force on the electrons**?

Approx. 0°	
Approx. 45°	
Approx. 90°	
Approx. 135°	
Approx. 180°	

2. What is the angle between the flight direction of the electrons and the force on the electrons?

Approx. 0°	
Approx. 45°	
Approx. 90°	
Approx. 135°	
Approx. 180°	

• Attach electromagnet to ring as shown below.

Attachment of the electromagnet

- Get second power supply, turn knob to zero and switch to DC.
- Connect the electromagnet to the second power supply (+/-) by using the red and blue cables as shown below.

Second Power supply

- Connect the second power supply to mains.
- Set up electron beam as in Task 1.
- Switch on second power supply (green switch on top).
- Gradually increase voltage on second power supply and observe.

CAREFUL! Slowly increase voltage!

- Switch off voltage of the second power supply.
- Swap the cables on the power supply to change polarity of electromagnet.
- Turn second power supply back on and observe.

Observation

What happened when you swapped the cables of the second power supply to change the polarity of the electromagnet?

• Switch off both power supplies when finished.

1. What are advantages of using an **electromagnet** to control an electron beam? (more than 1 possible answers)

Better control of the magnetic field strength \Box

- Can be switched on and off easily \Box
 - Is more energy efficient □
- Can produce a stronger magnetic field □
- 2. How can you **make** an electromagnet **stronger**?

Increase number of turns to the coil □ Increase electric current through the coil □ Insert iron core □

Your mission is to align the e-beam and deflect it to hit 4 specific points indicated by 4 pink dots somewhere on the glass of your electron tube, by using a bar magnet. Set up as in Task 1 "Make an electron beam.

- 1. The LHC at CERN uses superconducting magnets. How are superconducting magnets different to regular electromagnets?
- 2. Why are magnetic fields used to bend particle beams and not electric fields?