

## <u>Superconductivity</u>

# Work with liquid nitrogen and explore the properties of superconductors.

| Spokesperson:          |  |
|------------------------|--|
| Scientific writer:     |  |
| Safety manager:        |  |
| Technical Coordinator: |  |

## Lab Activities



#### 1. Tubes, magnets & gravity.



#### Task:

Carefully follow the instructions on page 2.



## Observation

Summarise your observations. What happens?

Explain your observations. Include a drawing.

## 2. A superconducting tube.



## Prediction

What happens when you drop a magnet on top of a cooled superconducting tube?

☐ The magnet will be repelled and pushed out of the tube (moving upwards).

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

- □ The magnet will stand still.
- □ The magnet will fall very slowly through the tube.



#### Explanation

Why will this happen?

- □ The superconducting tube becomes a permanent magnet.
- □ Some processes in the superconducting tube will completely compensate for the gravitational force.
- □ Some processes in the superconducting tube will compensate partially for the gravitational force.



## Task:

Now, try it out!

- Carefully follow the instructions on page 2.



## Prediction

What do you think would happen if you were to do the same experiment but with a disc instead of a tube?

## 3. A superconducting disc.



Task:

Carefully follow the instructions on page 3.

Now go to page 4. Can you reject 2 of these 3 hypotheses? Design the experiments!

## Test 1Hypothesis number:Experiment design (use drawings if you like):

Prediction bases on hypothesis:

**Outcome of the experiment:** 

**Did your observations match your predictions?** Yes  $\Box$  No  $\Box$ 

\_\_\_\_\_

\_\_\_\_\_

## Experiment 2 Hypothesis number:

Experiment design (use drawings if you like):

**Prediction bases on hypothesis:** 

**Outcome of the experiment:** 

**Did your observations match your predictions?** Yes 🗌 No 🗌



What is the difference between the superconducting tube and the disc?

Why is the magnet tilted for the disc but not for the tube?

## 4. The flux - pinning effect.



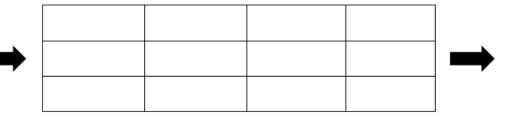
Task

Carefully follow the instructions on page 5.



- What happened when you lifted the magnet?
- Which movements where allowed, which were not?
- What is the difference between the Flux-Pinning-effect and the Meissner-effect? Find more on pages 9-10.
- Try to explain this effect by comparing the magnetic field lines in the sketches together with the images of the 2 different superconductor disks on page 6.




Explanation



#### Bonus! Levitating train.



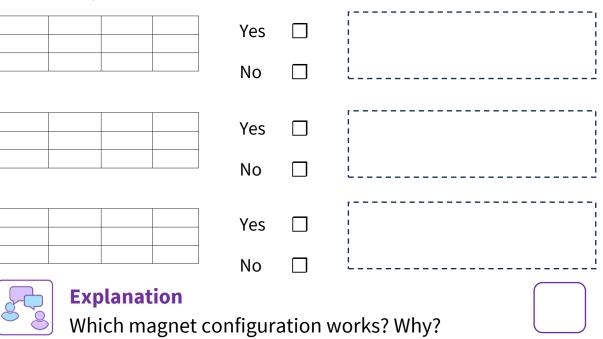
Think about a configuration of the magnets, which would allow the superconducting train to move to the right. Mark for each rectangle below which magnetic pole is facing upwards (N or S).





## Task

Carefully follow the instructions on page 9.




## Observation

## **Compare different magnet configurations.**

Arrangement

#### Does is work? Pattern shown by the Flux-Foil

