Applications of IaaS in Gravitational Wave Astronomy

Ethan Marx^{1*}, Will Benoit², Deep Chatterjee¹, Alec Gunny¹, Katya Govorkova¹, Eric Moreno¹, Rafia Omer², Ryan Raikman¹, Muhammed Saleem², Michael Coughlin², Philip Harris¹, Erik Katsavounidis¹,

- * Presenter
- 1 Massachusetts Institute of Technology
- 2 University of Minnesota

Gravitational Wave Astronomy

Large scale astrophysical events ripple the fabric of spacetime

Detect with (for now) ground-based interferometers

Hanford, Washington Livingston, Louisiana

Network of observatories all over the world

Third transient event catalog: GWTC-3

Gravitational Wave Astronomy - LIGO Data

Continuous time series (1Hz, 128Hz ... 16kHz)

Gravitational Wave channel: \sim 20GB/day (per instrument)

Physical Environment Monitors (seismometers, accelerometers, magnetometers, microphones etc)

Internal Engineering Monitors (sensing, housekeeping, status etc)

Together with various intermediate data products >2TB/day (per instrument)

(2002-2010) exceeds 1PB of data

Multi-messenger Astronomy

Gravitational waves

X-rays/Gamma-rays

Visible/infrared light

Neutrinos

Radio waves

Machine Learning in GW Astronomy

Real-time analysis with goal of alerting electromagnetic astronomers (MMA) of significant events

Detect events \rightarrow Localize on Sky \rightarrow Send public alerts

Main consideration is *latency*

Online Offline

Large scale analysis of archival data for

- End to end searches
- Validating new methods, performing new research

Main consideration is *throughput*

Machine Learning in GW Astronomy

Ηz Frequency [H2

[DeepClean](https://github.com/ml4gw/deepclean): Noise regression from auxiliary channels using autoencoders

*[Aframe](https://github.com/ml4gw/aframe)***: Detecting CBC events in low latency with supervised neural networks**

Detector Characterization | | | | Event Detection | | | | Event Characterization

[Parameter estimation:](https://github.com/ml4gw/PE) Characterizing source parameters with Normalizing Flows

Initial Success

Offline regression of 60Hz power line

Comparable Sensitivities with matched filtering pipelines over the O3 observing run

Log Normal $m_1 = 35, m_2 = 20$

Log Normal $m_1 = 20, m_2 = 10$

False Alarm Rate [months⁻¹]

Log Normal $m_1 = 35$, $m_2 = 35$

Log Normal $m_1 = 20, m_2 = 20$

False Alarm Rate [months⁻¹]

Gpc

Success estimating sky localization using generic templates

Not Without Limitations

 10^{-1} -11 Power Hz $n²$ 10^{-7} Frequency [Hz

Can DeepClean solve other known noise coupling problems?

Reduced sensitivities at lower mass ranges Wider error bars than

 $10⁰$

False Alarm Rate $\left[\text{months}^{-1}\right]$

 10

Log Normal $m_1 = 20, m_2 = 10$

 $\overline{2}$

 1.8

1.6

 1.4

 1.2

 0.8

 0.6

 10^{-1}

DeepClean Aframe Parameter Estimation

standard Bayesian methods

Many Ideas

Gdataclass class Coupling: freq_low: float freq_high: float witnesses: list[str]

Investigate complex couplings beyond standard 60Hz problem

Curriculum learning emphasizing lower mass ranges

Different architectures

Spectrograms to reduce data dimensionality

Larger models

Frequency domain vs time domain

Aframe - Sensitive Volume

Events are assigned a false alarm rate (FAR) by analyzing background timeslides

$$
\frac{\max(\sum_i^{N_b} \mathbb{I}[\eta_i \ge \eta], 1)}{T_b}
$$

Sensitive Volume -

detection algorithms effective "reach" to some population of sources at a given false alarm rate (FAR)

To get O(years) significance, need O(years) background

Aframe - Vanilla Inference Deployment

- Load torch model in memory, shove data through it
- Can process \sim 512 seconds of data per second (s'/s) on single 16GB V100
- 1yr of background = 17hrs of compute \rightarrow 70 days to get 100 yrs!
- Not quick enough for iterating on ideas

Aframe - Local IaaS

Deploy inference service locally, bombard with requests from clients

Throughput scales nearly linearly to \sim 3800 s'/s

Suboptimal due to FP16 issues, lazy client:GPU ratio strategy

13

Streaming IaaS - Snapshotter

Most GW use cases benefit from inference on overlapping data

Creates redundant network I/O that can bottleneck IaaS deployments

Snapshotter maintains state \rightarrow only send required updates

ml4qw library offers implementations of some basic stateful steps easy to build off for more custom needs

Aframe - IaaS Deployment

hermes IaaS made simple

<https://github.com/ML4GW/hermes>

Export

- Managing model repository
- Pythonic interfaces to protobuf configs
- Simple support for stateful streaming models
- Supports Torch and TensorFlow export

Conversion of Torch models to ONNX

Acceleration

- \bullet ONNX \rightarrow TensorRT conversion with FP16 support
- Python contexts for deploying a local inference service

Deployment

● Throughput and latency metrics monitoring service

- Asynchronous inference request submission and response handling
- Input/output shape/dtype inference

Nautilus Computing Cluster

[LIGO Data Grid \(LDG\)](https://computing.docs.ligo.org/guide/computing-centres/ldg/)

LIGOs computing ecosystem of mostly CPU resources

Limited GPUs, workloads not scalable

GPUs (currently) not exposed to condor scheduling system

Wild west: Submit GPU jobs from head nodes, first come first serve

[Nautilus HyperCluster](https://nationalresearchplatform.org/nautilus/)

Collection of computing clusters containing 1000s of GPUs

Containerized workloads

Trivially scalable with Kubernetes

With Kubernetes infra, can easily migrate to other cloud resources

Looking Ahead - Remote Distributed Inference

Looking Ahead - Data Analysis Ensemble

ML applications in GW astronomy are becoming production ready

IaaS will play a critical role enabling online and offline use cases

Scaling IaaS deployments will expedite research and time to solution

Aframe - Inference

Inference frequency determines resolution of coalescence time recovery

