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Third transient event catalog: GWTC-3

LIGO- Vf,( K/u iRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

11 events 44 events in 03a, 55 total 35 events in 03b, 90 total
from O1+02 1041 “subthreshold” events in 01,02,03a (catalogs are cumulative)



Gravitational Wave Astronomy - LIGO Data

Continuous time series (1Hz, 128Hz ... 16kHz)

Gravitational Wave channel:
~20GB/day (per instrument)

Physical Environment
Monitors (seismometers,
accelerometers,
magnetometers, microphones
etc)

Internal Engineering Monitors
(sensing, housekeeping,
status etc)

Together with various
intermediate data products
>2TB/day (per instrument)
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Multi-messenger Astronomy

X-rays/Gamma-rays

Neutrinos

Visible/infrared light e
Radio waves



Machine Learning in GW Astronomy

Online

Real-time analysis with goal of
alerting electromagnetic
astronomers (MMA) of
significant events

Detect events — Localize on Sky
— Send public alerts

Main consideration is latency

Offline

Large scale analysis of archival
data for

e Endto end searches

e Validating new methods,
performing new research

Main consideration is throughput




Machine Learning in GW Astronomy

Detector Characterization
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Frequency [Hz|

DeepClean: Noise
regression from auxiliary
channels using
autoencoders

ude [strain|
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Event Detection

LIGO strain data around GW150914
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Aframe: Detecting CBC
events in low latency
with supervised neural
networks

Event Characterization

Parameter estimation:
Characterizing source
parameters with
Normalizing Flows



https://github.com/ml4gw/deepclean
https://github.com/ml4gw/aframe
https://github.com/ml4gw/PE

Initial Success

DeepClean Aframe Parameter Estimation

Mollweide view

ASD [strain Hz"12]

Offline regression of Comparable Sensitivities
60Hz power line with matched filtering Success estimating sky
pipelines over the 03 localization using generic

observing run templates




Not Without Limitations

DeepClean

Can DeepClean solve
other known noise
coupling problems?

Aframe

Log Normal m; = 20, my = 10
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Reduced sensitivities at
lower mass ranges

Parameter Estimation
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Many Ideas

DeepClean

@dataclass
class Coupling:

freq_low: float
freq_high: float
witnesses: list([str]

Investigate complex
couplings beyond
standard 60Hz
problem

Aframe

Curriculum learning
emphasizing lower mass
ranges

Different architectures

Spectrograms to reduce
data dimensionality

Parameter Estimation

1e-21 Sine-gaussian with fo = 100 Hz; Q =10
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Larger models

Frequency domain vs time
domain




Aframe - Sensitive Volume

Log Normal m; = 35, my = 35 Log Normal m; = 35, my = 20
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significance, need O(years)
background



Aframe - Vanilla Inference Deployment

e Load torch model in memory, shove data through it
e Can process ~512 seconds of data per second (s’ / s) on single 16GB V100
e 1yrof background = 17hrs of compute — 70 days to get 100 yrs!

e Not quick enough for iterating on ideas



Aframe - Local laaS

Deploy inference service
locally, bombard with
requests from clients

Throughput scales nearly
linearly to ~3800 s'/s

Suboptimal due to FP16
issues, lazy client:GPU
ratio strategy

1.ligo-wa.caltech.edu
8x V100 16GB
80 CPUs

Containerized Triton Deployment

V100 16GB

V100 16GB

V100 16GB

V100 16GB

V100 16GB

V100 16GB

V100 16GB

V100 16GB

LIGO Data Grid Shared Filesystem

Throughput [seconds of data / second] I l I I
3 & 3 & 3§
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L] [l CPU Local [l GPU Local [ll] GPU laas$ Distributed

121
Seconds of data per batch
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Streaming laaS - Snapshotter

Most GW use cases benefit
from inference on overlapping
data

Creates redundant network I/0
that can bottleneck laaS
deployments

Snapshotter maintains state —
only send required updates

ml4qw library offers implementations of some basic stateful
steps easy to build off for more custom needs


http://github.com/ml4gw/ml4gw

Aframe - laaS Deployment

Snapshotter - ; Preprocessor - ; Aframe neural
[ TorchScript } [ TorchScript } [network—TensorRT

| | ]

Previous data put on GPU, maintained as state Streaming update representing a batch of new data
L J

Batch element 0
Batch element 1

- Background for estimating PSD
- Discarded whitening filter settle-in
- Timeseries to be windowed into batch

Batch element k




hermes laaS made simple

https://qgithub.com/ML4GW/hermes

Export H Acceleration H Deployment

e Managing model e Conversion of Torch e Python contexts

repository models to ONNX for deploying a

e Pythonic e ONNX — TensorRT local inference
interfaces to conversion with service
protobuf configs FP16 support e Throughput and

e Simple support for latency metrics
stateful streaming monitoring service
models

e Supports Torch
and TensorFlow
export

Inference

Asynchronous
inference request
submission and
response handling
Input/output
shape/dtype
inference
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https://github.com/ML4GW/hermes

Nautilus Computing Cluster

LIGO Data Grid (LDG)

LIGOs computing ecosystem of mostly
CPU resources

Limited GPUs, workloads not scalable

GPUs (currently) not exposed to condor
scheduling system

Wild west: Submit GPU jobs from head
nodes, first come first serve

Nautilus HyperCluster

Collection of computing clusters
containing 1000s of GPUs

Containerized workloads
Trivially scalable with Kubernetes

With Kubernetes infra, can easily
migrate to other cloud resources


https://computing.docs.ligo.org/guide/computing-centres/ldg/
https://nationalresearchplatform.org/nautilus/

Spin up multi node
Triton deployment
with Kubernetes

LDG

Condor Scheduler

CPU client |-
running-~" -
hermes

A

\ [ LDG shared file system ’

Looking Ahead - Remote Distributed Inference
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Bombard load balancer with
requests from clients
launched locally on LDG

Work in Progress



Looking Ahead - Data Analysis Ensemble

Incoming

DeepClean strain
noise estimates

request
with
streaming
state
updates

DeepClean

Detection
Statistic
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Conclusion

ML applications in GW astronomy are becoming production ready
laaS will play a critical role enabling online and offline use cases

Scaling laaS deployments will expedite research and time to solution



Thank You







Aframe - Inference
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Higher frequency mference means much

of input data is overlapping Inference bottlenecked by data transfer



