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Introduction: Event Filter Tracking in ATLAS [?.ﬁ‘ﬁ&fg]

ATLAS is planning to upgrade the current High-level Cremee) (o) (wenoron )
trigger farm to Event Filter with commercial solution = e, Vv
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- The throughput and scalability are the key. ,
- Expected to have ~300 k spacepoints with ITK ‘_F‘l”"_]' e
- Region-of-interest tracking at 1IMHz ( o ] [ coger ot o ey
- Full-scan tracking at 150 kHz ) i
- 2nd Demonstrator in Q3 2024 (&= ][:::][ = eyl e
As-as-service computing model could help here! 15
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EF Tracking possible pipelines

Currently, there are three possible

technology choices for EF
Tracking pipelines

- CPU-Only

- GPUs
- Track 1: ACRON
-  Track 2: ACORN + Traccc

- Track 3 FPGA

There are three accelerator tracks
which could apply the
tracking-as-a-service
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Track 1: ACRON acsrn
GPU-based GNN Tracking (ExaTrkX) as a Service

<

Existing solution from ExaTrkX as a Service GPUs (acorN pipeiine) CPU-bases
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Can be quickly adapted to apply ACORN into - i :
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Track 1: ACRON
GPU-based GNN Tracking (ExaTrkX) as a Service

One NVIDIA A100-SXM4-40GB on Perlmutter

One NVIDIA A100-SXM4-40GB on Perlmutter
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e Increasing Triton model instances increases the GPU utilization and throughput

e Customized backend is better than an Ensemble model for a complex workflow like
the GNN-based Tracking

e Direct inferences require higher concurrency to reach maximum throughput



Track 2: ACORN + Traccc

GPUs (ACORN pipeline)

- Traccc develops combinatorial KF (CKF) for T T R
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- A promising solution is to to combine ACRON
+ CKF (GPU), which can have full tracking

chain end-to-end on GPUs Category Algorithms
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We are interested in working on adding this option =———

Seed finding
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Need personpower to work on connecting the Track finding | Combinatorisl KF
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acts-project/traccc: Demonstrator tracking chain on accelerators - Traccc dev status
https://github.com/acts-project/traccc



https://github.com/acts-project/traccc
https://github.com/acts-project/traccc

ACTS with GNN (ExaTraX) Plugin (Direct inference)
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Acts - https://qithub.com/acts-project

ACTS contains a full tack reconstruction
chain, which will be used in ATLAS for
Run 4 offline tracking

GNN TrackFinding (ExaTrk) can run
locally with CPU/GPU

ACTS TrackFitting still runs only on CPU


https://github.com/acts-project

Integration of the ExaTrkX-as-a-service to ACTS

Client added in ACTS to communicate with Server
ACTS

——————————————————————————————————————————————

Users can swap between direct or triton inference easily
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Offload more algorithms to coprocessor to increase the throughput — ACORN + Traccc
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Performance of ACTS-as-a-service

Avg inference time per events (over 10 evts)

Inference timing studies (ttbar PU=200, ODD) )
CPU: 2x AMD EPYC 7763 CPUs, 64 cores per CPU
GPU: 1x NVIDIA A100-SXM4-40GB

avg time per event [s]

No additional overhead was observed in the as-a-service
inference
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Track 3: FPGA Pipline
FPGAs
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ML algorithms for major
tracking sub-algorithms

e Many ML sub-algorithms to build up the full FPGA pipeline

ACTS based
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e Our A3D3 collaborators from UIUC and NYCU is working on porting GNN-based

tracking to FPGA
e Both can benefit from the as-a-service approach
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Inference as-a-service in Athena
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At the end of the date, the chosen option needs
to be integrated with Athena

Inference as-a-service provides a way to free
Athena from:

Implementing the algorithms

Installing their dependencies

Adapting to algorithm updates

Supporting them to run on different platforms

But Athena has to:

e Install client dependencies (QRPC and
TritonClient)

e Check if the requested model matches the
expectation
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Inference as-a-service in Athena

Machine Learning Inference in Athena

[Gontron\ e \We propose a generic inference interface

AthinferenceTool

whose arguments are named-tuples for

@ IAthinferenceTool

std::map<str, std::pair<std::vector<float>, std::vector<int64>>& inputs, .
std::maps<str, std::pair<std::vector<float>, std::vector<int64>>& outputs N p u tS an d (@) utp u tS ,

o inference(

« % e Two concrete implementations: one with
(©) AthinferenceToolonnx (©)AthinferenceToolTriton ON NX and another W|th Tr|ton
< modelFilePath < modelName
< OnnxSessionTool < URL

e (Can be swapped through configuration.

e Can apply to both online and offline

as-a-service application
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For Online tracking: Kubernete approach

For online tracking, local cluster farm at P1 would be the best option

it e, . S e Load Balancer, a public client-facing
' endpoint for all services delivered to
P clients outside the cluster

1.9
iii e Ingress Controller, distributes

¢ ? workloads within the cluster

. BN .
ﬁe@4 1 :ii e Node N, computing nodes that run

ingrss containerized services

Request to Balancer Controller
color.com on port 80 port 80

180 - pine.color
(e - lagoon.color

id Node 1

This is the approach industries use to

Node 3 § é é
-I o oo o |
O e ssvomcr g e 30> [ i1 deploy business applications/services.

© The Ingress controller guarantees
traffic distributes across nodes

i senvces g"-::::::'.::'.:::::::::::::'.::'.::'.:::::::::::::'.::'.::'.:::::::::::::::::::‘.g..g Need personpower to mvestlgate the

N feasibility this approach.

Image credit: https://www.nginx.com/blog/kubernetes-networking-101/



For offline reconstruction:
Scenario #1

(~160)

Set up a Triton server with all supported
models in each Tier 2 cluster. The server will
respond to offline Athena laaS job requests
within the Tier 2 cluster. No public endpoint.

Tier-1 sites
Connected by >100 Gb/s links

PIC
Barcelona, ES E =0 Brookhaven NY, USA
= = =
| & & o
Dubna, RU -—

- — Karlsruhe, DE

RAL

= Didcot, GB

Moscow, RU =

=
= FNAL
Batavia IL, USA

NCBJ
Otwock, PL

(i

Averaged # of request frequency is about 30
requests per hour per Tier 2 cluster.
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Maybe a small cluster without complicated
load balancer is sufficient to respond to those
concurrent requests.



For offline reconstruction:

Scenario #2

Set up a Triton server with all B Bt e PR 5, WAOT—
supported models in High ;

Performance Centers through a Hml 1

public client-facing endpoint.
Different HPCs have different ._’- @* 1 S

as-a-service supports. E.g. one Seats ol ':g,',f:

port 80 - pin

cannot run Kubernetes in Perlmutter. ogoancor [

Node 3 1
S Service: Service: Service:
@ The load balancer distributes traffic 8 33‘3% Deep Lake
across Ingress pods. -
s :

© The Ingres: tIIg
tﬂdtbt nodes § 2=
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From Athena client’s point of view, it o
should be a matter of a different URL. (N]
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Practicalities

e Authentication and security

e Containization choice

e Load balancer implementation
e Model version control

e Dynamically figure out server URL rather than statically assign in job
description
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Summary

e ATLAS Phase-Il EF Tracking upgrade requires a cost-efficient commercial
solution to achieve high throughput for HL-LHC

e The ExaTrkX-as-a-Service based on the NVIDIA Triton server and used
ACTS as the first client to use the tracking as a service in ATLAS.

e Integrating Triton (client) into Athena will facilitate the usage of remote & local
coprocessors, including GPUs and FPGAs.

e Many options to deploy the Trion server. What is the best option is still an
open topic

e This could benefit EF tracking development and aslo offline simulation and
reconstruction.
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https://github.com/triton-inference-server/server
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Ensemble Backend

e GNN-Based Tracking is a complex workflow, consisting of 5 discrete
sub-algorithms
e Ensemble scheduling uses greedy algorithms to schedule each algorithms
e Pros: directly use existing Triton inference backends
e Cons: little control with the data flow and algorithm scheduling, increasing
the 10 operations and latency

Pytorch Python Ensemble model

SP Embedding new SP FRNN Edges Python
nge Scores—> applyFiltering Edges

SP _\/,(@7Tracks—>©
Q Pytorch Pytorch \/:@_ =
= Edge Scores

L
Pl

Pytorch
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Customized Backend

e Customized backend provides means to receive requests from and send
outputs to the client.
o Pros : low overhead, full control of data flow and devices;
o Cons : need to write user’s own inference code.
e We build customized backends for the GPU-only ExaTrkX inference service
and the CPU-only (fallback).

( \ Custom backend
SP/—H Embedding Fnew SP FRNN T—-Edges

/\j Filtering FEdge ScoreSA)[ applyFiltering EEe , )
sp ) : . wce J—Tracks—)@
medge Scores
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