Triton + NERSC

SONIC Workshop March 2024

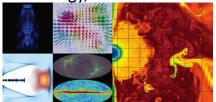
Andrew Naylor NESAP Postdoc March 1, 2024

Who am I?

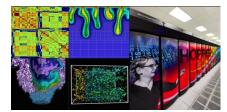
- NERSC NESAP Postdoc
- Work within Data & AI Services group
- Focus on AI inference
- Avid drummer

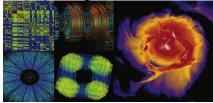
Office of

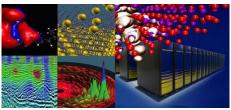
TLDR: Currently unable to run SONIC but ExaTrkX is running Triton on NERSC and NERSC is interested in AI inference-as-a-service

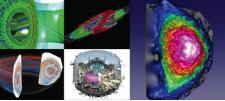

National Energy Research Scientific Computing Center

- NERSC (at LBNL) is the *mission* High Performance Computing and Data facility for the DOE Office of Science
- Celebrating 50 Years


~10,000 Users, 800+ Projects, ~2000 NERSC citations per year


Bio Energy, Environment

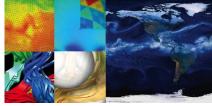

Particle Physics, Astrophysics


Computing

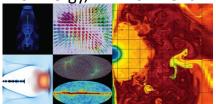
Nuclear Physics

Materials, Chemistry, Geophysics

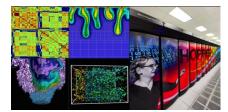
Fusion Energy, Plasma Physics


g Science Solutions to the World

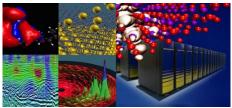
Office of

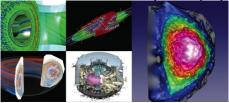


National Energy Research Scientific Computing Center


- •We deploy supercomputer systems for cutting edge simulations and data analytics at scale
- NERSC Science Acceleration Program (NESAP) is a collaboration with partners to prepare for advanced architectures and new systems.

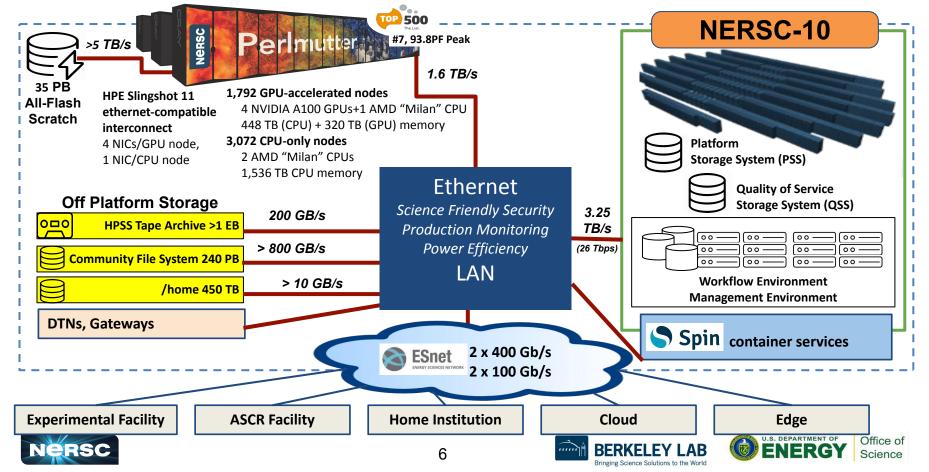
Bio Energy, Environment


Particle Physics, Astrophysics


Computing

Nuclear Physics

Materials, Chemistry, Geophysics


Fusion Energy, Plasma Physics

g Science Solutions to the World

Office of

NERSC Center Architecture

7

Containers at NERSC

Containers are valuable to our scientific computing users

Encapsulation, isolation, reproducibility, portability, and even scalability

NERSC supports user container workloads via Shifter

- Developed at NERSC to address security concerns of docker
- Enables scalability on HPC systems
- Users can build their images with docker, then easily convert to shifter with a simple pull command

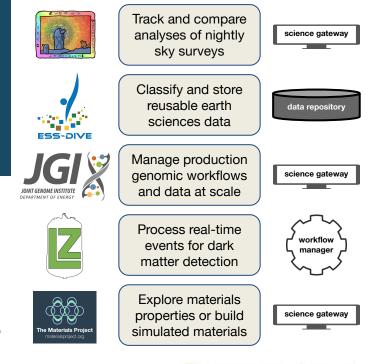
NERSC also supports podman-hpc

- NERSC built wrapper for podman (open source tool)
- All the benefits of shifter, but using OCI standard runtime
- Users can build images at NERSC

Spin: Container Services for Science

Many projects need more than HPC.

Spin is a platform for services.


Users deploy their science gateways, workflow managers, databases, and other network services with Docker containers.

- Access HPC file systems and networks
- Use public or custom software images
- Orchestrate complex workflows
- Secure, scalable, and managed

kubernetes

Some projects using Spin:

S. DEPARTMENT OF

Office of

Workflow capabilities

Kubernetes (in the future?)

- Currently cannot provide k8s for our GPU compute resources in a cloud-like way
- Maybe user deployment of usernetes (theoretically)
- We are looking into approaches for the NERSC-10 system (~2026) as well as pilot collaborations with SchedMD on k8s+slurm integration

Realtime queues are available to enable on-demand HPC resources

- e.g., for experiments that need realtime processing during data collection
- Available by special request: <u>Resource Usage Policies NERSC Documentation</u>

Superfacility API (<u>https://api.nersc.gov/api/v1.2/</u>)

- An API for interacting with NERSC supercomputers
- Vision: all NERSC interactions are callable; backend tools assist large or complex operations.
- Able to submit jobs, create reservations, move + upload files, etc...

NERSC looking ahead

We want to enable and support all major types of ML workflows

- We have so far focused on supporting training workloads, which are well suited to HPC
- As AI4Science matures, inference workloads become more important
- We are interested in supporting GPUaaS-like workflows

We want to provide a rich platform/ecosystem for MLOps for science

• Productive and performant interfaces to deploy distributed ML workloads, search hyperparameters, track experiments, share models, etc.

NERSC-10 (2026) will be designed with "workflows" heavily in mind

• will further enable complex research workflows for experimental science

Experience with SONIC

- Unable to run SONIC right now
- Following Sonic-workflows
- After challenges to setup CMSSW on Perlmutter. Fallback server fails:

\$ cmsRun run.py maxEvents=1 verbose=1 ... /pscratch/sd/a/asnaylor/cms/tmp/sonic-workflows/CMSSW_12_5_0_pre4/bin/e 18_amd64_gcc10/cmsTriton: line 276: singularity: command not found

NERSC does not fully support singularity

- Maybe get singularity from cvmfs or user deployed binary (performance untested)
- $_{\circ}~$ Should work with podman-hpc

Experience with SONIC

Modified cmsTriton script to use podman-hpc

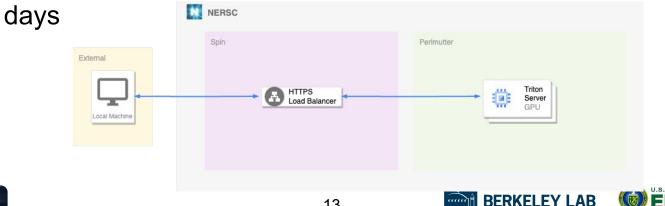
- Still unsuccessful, requires deep-dive
- •Was able to deploy the Triton Server via podman-hpc

\$ podman-hpc run ... --gpu fastml/triton-torchgeo:22.07-py3-geometric tritonserver ... --model-repository=/data/models/

•However, it was missing a model:

\$ cmsRun run.py maxEvents=1 verbose=1 address=\$ADDRESS
An exception of category 'MissingModel' occurred while
 [0] Calling beginStream for module
DeepMETSonicProducer/'deepMETsResolutionTune'

Experience with Triton @NERSC

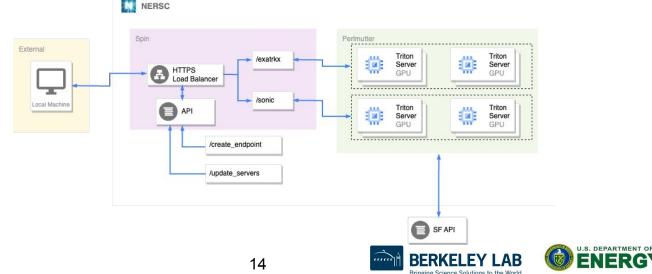

GNN-based track finding (ExaTrkX) as-a-service tested on Perlmutter

- Triton ensemble model & custom backend
- Seen positive results in as-a-service testing

Tested Triton server with Resnet50 (PyTorch backend) through Spin LB

- Performance was x5 slower than Triton on Perlmutter.
- Issues and performance at NERSC are not yet ironed out as early

Office of



Potential Future Plans

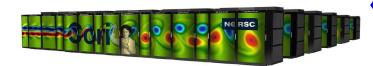
Exploring idea of NERSC providing inference load balancer on Spin

- Users provide inference servers and we connect it to the internet
- Create endpoints within nersc through an API
- Control Triton server deployment through SF API

Office of

Thank you for listening. Any Questions?

Andrew Naylor anaylor@lbl.gov FastML Slack


Backup slides

NERSC Systems Roadmap

NERSC-7: Edison Multicore CPU

2013

NERSC-8: Cori Manycore CPU NESAP Launched: transition applications to advanced architectures

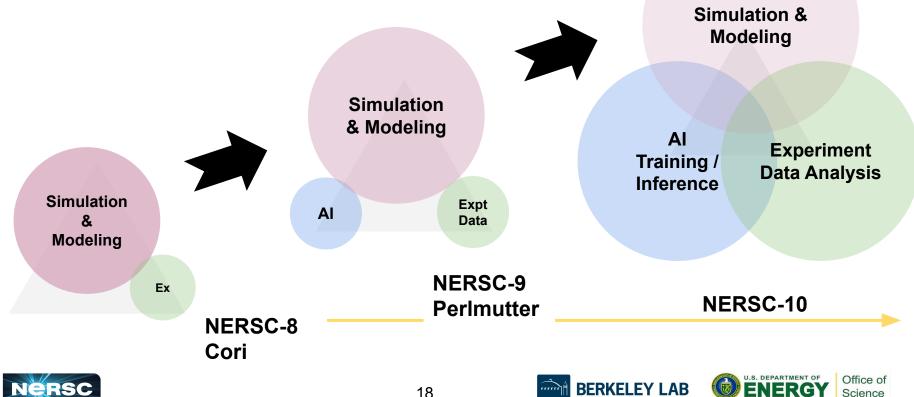
2020

NERSC-9: Perlmutter CPU and GPU nodes NESAP Expanded Simulation, Learning & Data: Continued transition of applications and support for complex workflows NERSC-10: Exa system NESAP Workflows: Accelerating end-to-end workflows with technology integration

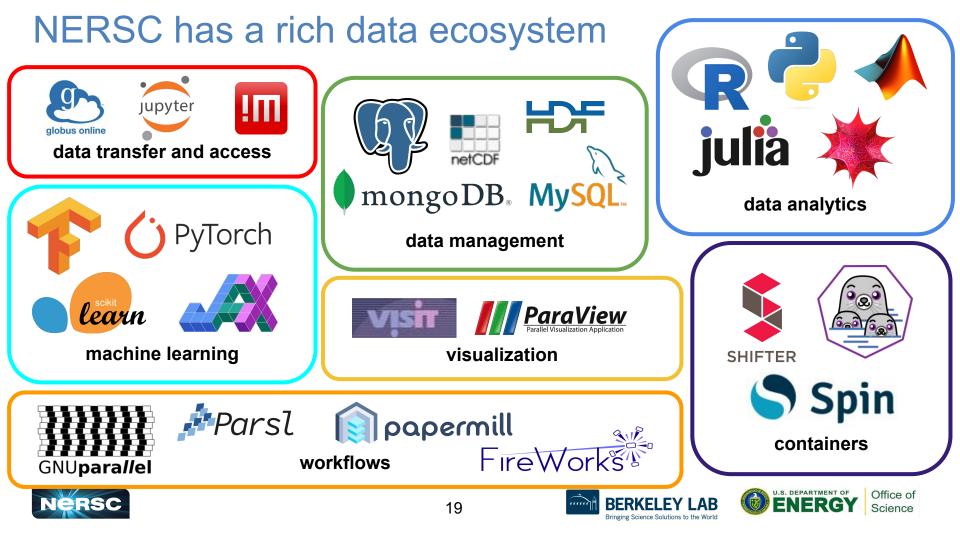
2030+

2026

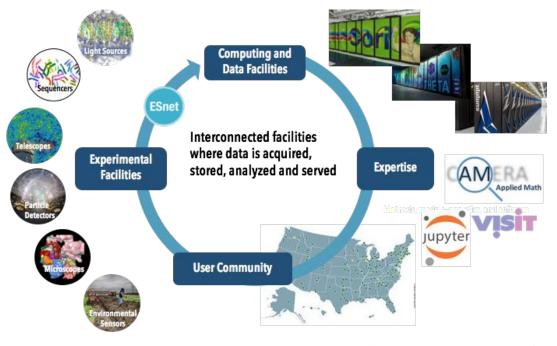
Office of Science


NERSC-11:

Beyond


Moore

HPC Workload is Evolving


Bringing Science Solutions to the World

The Superfacility Model: an ecosystem of connected facilities, software and expertise to enable new modes of discovery

Superfacility@LBNL: NERSC, ESnet, AMCR, & SDD working together to support experimental science

- A model to integrate experimental, computational and networking facilities for reproducible science
- Enabling new discoveries by coupling experimental science with large scale data analysis and simulations

RESEARCH

20

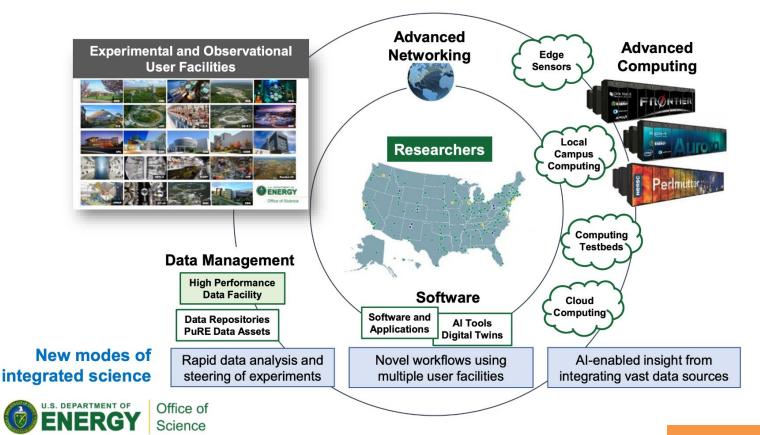
Machine-readable supercomputers: the Superfacility API

Vision: all NERSC interactions are callable; backend tools assist large or complex operations.

Endpoints currently deployed:

/meta	information about this Superfacility API installation
/status	NERSC component system health
/account	Get accounting information about the user's projects
/utilities	basic file browsing, upload and download of small
	files to and from NERSC
/storage	Transfer files between Globus endpoints.
/compute	Run commands and manage batch jobs on NERSC compute
/tasks	Get information about your pending or completed tasks
/reservations	submit and manage future compute reservations

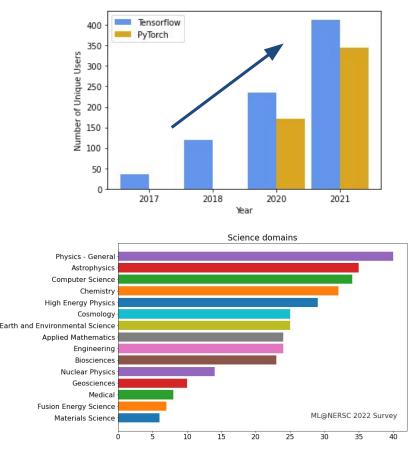
21 https://api.nersc.gov/


Superfacility API		
meta information about this Superfacility API installation		
GET	/meta/changelog	
GET	/meta/config	
status NERSC component system health		
GET	/status	
GET	/status/notes	
GET	/status/notes/{name}	
GET	/status/outages	
GET	/status/outages/planned	
GET	/status/outages/planned/{name}	
GET	/status/outages/{name}	
GET	/status/{name}	
account Get accounting information about the user's projects		
POST	/account/groups	

/account/groups

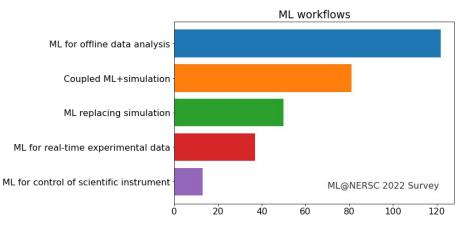
DOE's Integrated Research Infrastructure (IRI) Vision:

To empower researchers to meld DOE's world-class research tools, infrastructure, and user facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation

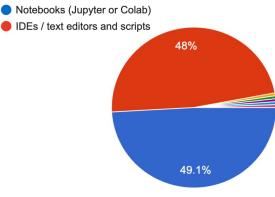

Growing scientific AI workload at NERSC

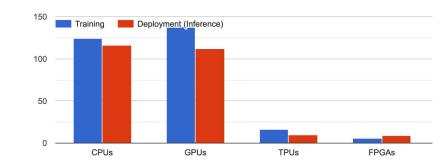
We track ML software usage

- Module loads and python imports
- Users of DL frameworks increased more than 6x from 2018 to 2021


We track ML trends through 2-yearly survey

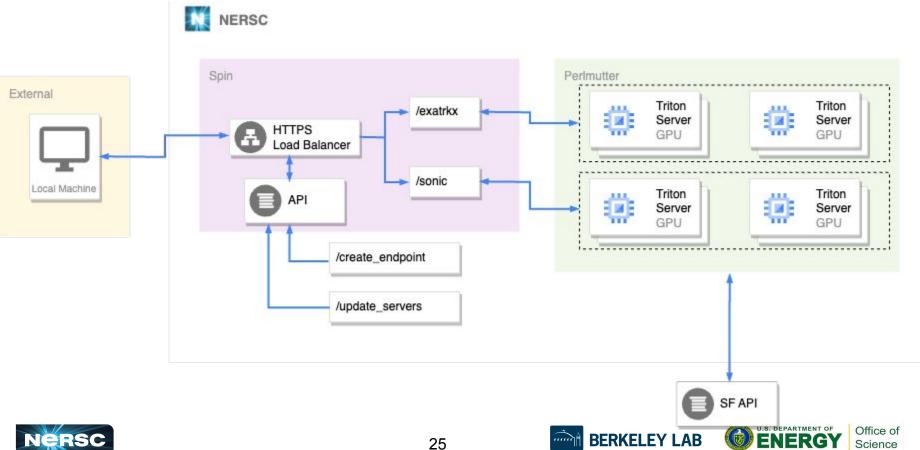
- Targets scientific communities potentially using HPC resources (not just NERSC)
- Covers problem type, workload, model architectures, scaling, hardware, software, and usage of NERSC software/resources


Scientific AI workflows


- Interesting mixture of ML applications
- Jupyter very popular for development
- CPUs still used by many
- Trends in training vs. inference

What is your preferred environment for ML development?

171 responses



What hardware do you run your models on (include future plans)?

Potential Future Plans

Bringing Science Solutions to the World