Breaking into the window of primordial black hole dark matter with x-ray microlensing

Authors: Manish Tamta, Nirmal Raj, Prateek Sharma (Ph.D. student at IISc Bangalore)

भारतीय विज्ञान संस्थान

PPC 2024

Based on arXiv: 2405.20365 (Submitted to Phys. Rev. Lett. [PRL])

What our universe is made up of?

This is what CMB tells about the universe we live in

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Cirelli et. al. [arXiv: 2406.01705] **Dark matter comprises ~85% of total matter in the universe!**

Evidences of dark matter in the universe

Galactic radius in kpc

Smoking gun...Bullet cluster

Clowe et al., The Astrophysical Journal + 2006

Small scale

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Cirelli et. al. [arXiv: 2406.01705]

The primordial black hole dark matter window

 10^{15}

 10^{0}

PBHs may form due to density perturbations generated during the inflationary epoch! $M_{\rm HBH}^{\rm MO}/{\rm HB}$

1974

10^{-18} PBH as 100 % dark matter!?

PBH

 10^{-3}

 10^{-4}

PBHs may form due to density perturbations generated during the inflationary epoch!

The primordial black hole dark matter window

Current and future xray telescopes can probe this window!

Manish Tamta et. al. + 2024 arXiv:2405.20365

X-ray telescope sensitivities for PBH dark matter detection/exclusion

 $X\mu$: used the SED of Crab-like pulsar in SMC

PBH length scale visualization

Manish Tamta + 2024

zoomed view of H-atom Hydrogen atom Primordial black hole $(M_{PBH} = 10^{-16} M_{\odot})$ $500^{1.0} - 0.5_{10}0^{0}$ 0.5 1500

Manish Tamta + 2024

Primordial black hole $(M_{PBH} = 10^{-12} M_{\odot})$

Hydrogen atom \rightarrow

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

X-ray photons can probe these subatomic size PBHs

What is gravitational microlensing

Lens equation: $\vec{\beta} = \vec{\theta} - \vec{\alpha}$

Croon, McKeen, Raj + 2020

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

$$\hat{\alpha} = \frac{4GM}{c^2\xi} = \frac{2R_{Schw}}{\xi}$$

Magnification due to a point lens

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \frac{y^2 + 2}{y\sqrt{y^2 + 4}}$$

$$y \equiv \frac{\beta}{\theta_E}$$

Need for wave optics microlensing

Lens equation: $\vec{\beta} = \vec{\theta} - \vec{\alpha}$

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Croon, McKeen, Raj + 2020 the wave regime! $y^2 + 2$ $\mu = \frac{1}{\beta \, d\beta} = \frac{1}{v\sqrt{v^2 + 4}}$

Wave regime lensing and Parameter w

$w \equiv \frac{4GME_{\gamma}}{\hbar c^3} = \frac{2R_{schw}E_{\gamma}}{\hbar c}$

Wave regime: if $w \lesssim y^{-1}$

Geometric optics regime: when $w > > y^{-1}$

Note that y is impact parameter!

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Dimensionless frequency

X-ray microlensing can probe subatomic size PBHs

Yang Bai et. al. + 2019

Why X-ray pulsars?

- Less variability and persistent x-ray emission
- Higher photon counts
- Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Telescopes and pulsars for x-ray microlensing

NASA's NICER https://svs.gsfc.nasa.gov/

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Let's hope for such telescopes in the near future :)

Telescopes and pulsars for x-ray microlensing

NASA's NICER https://svs.gsfc.nasa.gov/

STR arXiv:19

x-ray pulsar	net exposure (days)	$D_{ m S}~(m kpc)$	(ℓ, b)	σ_B/B
SMC X-1	1.74	64 [<mark>28</mark>]	$(300.41^{\circ}, -43.56^{\circ})$	0.28
Cyg X-2	5.47	11 [29]	$(87.33^{\circ}, -11.32^{\circ})$	0.02
Vela X-1	4.46	2 [30]	$(263.06^{\circ}, 3.93^{\circ})$	0.25
Crab pulsar	4.76	2 [31]	$(184.56^{\circ}, -5.78^{\circ})$	0.01

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

arXiv:1903.03035

Expected launch: 2031

Xμ

Energy (keV)

Statistical way of interpreting X-ray pulsar light curve

 $\mathbb{P}(N_{\sigma}) = [1 - \Phi(N_{\sigma} = 3)]^{N_{consec}=3} = 2.5 \times 10^{-9}$ Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

How to identify a true microlensing event in the light curve?

Excess x-ray photon counts at 3σ level for **3** consecutive time bins is a detection!

Achromaticity ($w \gtrsim y^{-1}$)

A new diagnostic for x-ray microlensing

windows time (sec) Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

A new diagnostic for x-ray microlensing

Microlensing Event Rate

Total # of microlensing events

$$f(x)e^{-v_E^2/v_0^2} \times \int_0^{y_T(x)} \frac{dy}{\sqrt{y_T^2 - y^2}} \times \mathbb{P}(n_\sigma)$$
$$v_E \equiv 2r_E \sqrt{y_T^2 - y^2}/t_E$$

S:
$$N_{ev} = f_{PBH} \sum_{i} T_{obs}^{i} \int_{t_{min,i}}^{t_{max,i}} dt_{E} \frac{d\Gamma_{i}}{dt_{E}}$$

X-ray telescope sensitivities for PBH dark matter detection/exclusion

 $X\mu$: used the SED of Crab-like pulsar in SMC

Take Home

- Primordial black holes (PBHs) in the mass range $10^{-16} 10^{-11} M_{\odot}$ may constitute 100% dark matter.
- WO microlensing of bright x-ray pulsars provide the most robust and immediately implementable opportunity to uncover PBH dark matter.

Take Home

- Primordial black holes (PBHs) in the mass range $10^{-16} 10^{-11} M_{\odot}$ may constitute 100% dark matter.
- WO microlensing of bright x-ray pulsars provide the most robust and immediately implementable opportunity to uncover PBH dark matter.
- NICER telescope can probe this window near $10^{-14} M_{\odot}$ with just two months of exposure on the x-ray pulsar SMC-X1!
- PBH evaporation limit at around $10^{-16} M_{\odot}$, may be probed with a minimal microlensing setup involving hard x-ray pulsars!

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

PBH masses that can be probed

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Microlensing magnification in the wave regime finite extent of the source

$$a_S = \frac{xR_S}{r_E}$$

Buffer slides: Magnification factor $\mu(w, y, a_s(x))$ in w-y space

Buffer slides: Detector and pulsar specific energy averaged magnification

$$N_{\sigma} = 3$$
 and $N_{consec} = 3$ with

• Remark: $\mathbb{P}(n_{\sigma} = 0) = 0.13$; low event acceptance

• $\mathbb{P}(n_{\sigma} = -1) = 0.596$; optimal yet significant choice

•
$$\mathbb{P}(n_{\sigma} = -2) = 0.93$$
; too aggressive choice

Manish Tamta, IISc Bangalore, PPC 2024, manishtamta@iisc.ac.in

Buffer slides: Statistical way of interpreting X-ray pulsar light curve

- $\overline{\mu}_F \gtrsim \mu_{thresh}$

- $n_{\sigma} = -1$ are optimal choices.

Buffer slides: Condition for time binning of light curve

• Killing the Look elsewhere effect

 $\mathbb{P}(N_{o})$

 $\mathbb{P}(N_{\sigma}) = [1 - \Phi(N_{\sigma})]$

 $\frac{t_{\rm bin}}{t_{\rm exp}} = 1.9 \times 10^{-8}$

$$\sigma > \frac{t_{\rm bin}}{t_{\rm exp}}$$

$$= 3)]^{N_{consec}=3} = 2.5 \times 10^{-9}$$

$$3\left(\frac{t_{\rm bin}}{0.1 \, \rm s}\right) \left(\frac{60 \, \rm days}{t_{\rm exp}}\right)$$