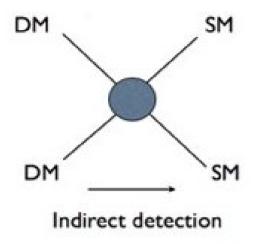
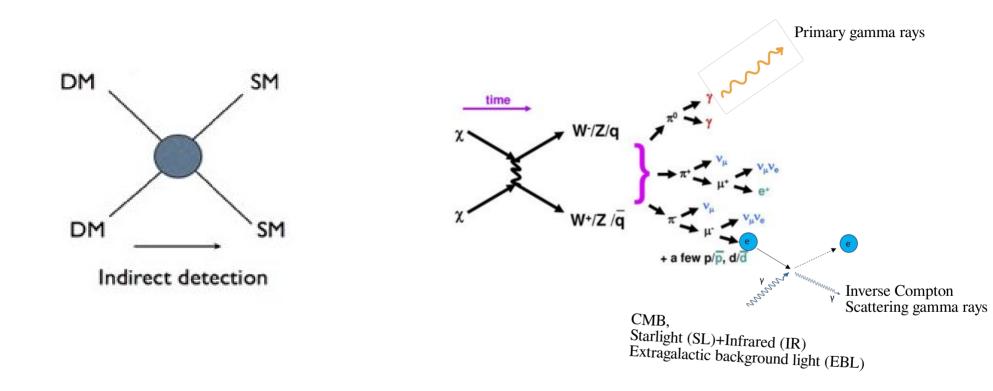


PPC 2024

Search for dark matter decay and annihilation using γ ray observation by Tibet AS $_{\gamma}$ and LHAASO


Abhishek Dubey

Centre for High Energy Physics Indian Institute of Science, Bengaluru


Based on arXiv:2105.05680 (PRD Letter) & Dubey et al (In Prep.)

In collabration with Tarak Nath Maity, Akash Kumar Saha and Ranjan Laha

Dark Matter Indirect detection

Dark Matter Indirect detection

Flux of gamma rays from DM decay/annihilation

DM decay

$$\frac{d\Phi^{G}}{dE_{\gamma}} = \frac{1}{4\pi m_{\chi} \tau_{\chi}} \frac{dN}{dE_{\gamma}} \int_{0}^{\infty} ds \rho(s, b, l) e^{-\tau_{\gamma\gamma}(E_{\gamma}, s, b, l)} \underset{\substack{m_{\chi} = \text{DM mass, } \tau_{\chi} = \text{DM lifetime,} \\ E_{\gamma}, E_{e} = \text{energy of the prompt photons and prompt electrons/positron} \\ p = \text{DM density profile, which we have taken as NFW profile} \\ s = \text{line-of-sight distance taken for our galaxy, b, l are Galactic latitude and longitude} \\ \tau_{\gamma\gamma} = \text{optical depth of photons due to CMB, SL+IR and EBL}}$$

Flux of gamma rays from DM decay/annihilation

DM decay

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{1}{4\pi m_{\chi} \tau_{\chi}} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho(s, b, l) e^{-\tau_{\gamma\gamma}(E_{\gamma}, s, b, l)}$$
HDMSpectra

 $m_r = DM$ mass, $\tau_r = DM$ lifetime,

- E_{γ} , E_{e} = energy of the prompt photons and prompt electrons/positron

 $\tau_{\gamma\gamma}$ = Obtaining the product of the product of

DM annihilation

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho^2(s,b,l) B_{sh}(s,b,l) e^{-\tau_{\gamma\gamma}(E_{\gamma},s,b,l)}$$

Since the annihilation rate depends on the dark matter density squared (and $\langle \rho^2 \rangle \geq \langle \rho \rangle^2$), the presence of the subhalos will boost the gamma-ray signatures from dark matter annihilation. It is given by \vec{B}_{sh} (Boost factor).

Flux of gamma rays from DM decay/annihilation

DM decay

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{1}{4\pi m_{\chi} \tau_{\chi}} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho(s, b, l) e^{-\tau_{\gamma\gamma}(E_{\gamma}, s, b, l)}$$
HDMSpectra

 $m_x = DM$ mass, $\tau_x = DM$ lifetime, E_{γ} , E_e = energy of the prompt photons and prompt electrons/positron $\rho = DM$ density profile, which we have taken as NFW profile s = line-of-sight distance taken for our galaxy, b, l are Galactic latitude and longitude

 $\tau_{\gamma\gamma}$ = optical depth of photons due to CMB, SL+IR and EBL

DM annihilation

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho^2(s,b,l) B_{sh}(s,b,l) e^{-\tau_{\gamma\gamma}(E_{\gamma},s,b,l)}$$

Since the annihilation rate depends on the dark matter density squared (and $\langle \varrho^2 \rangle \geq \langle \varrho \rangle^2$), the presence of the subhalos will boost the gamma-ray signatures from dark matter annihilation. It is given by B_{sh} (Boost factor).

In our analysis, we have taken both primary and inverse Compton scattering gamma ray flux from Galactic and Extragalactic domain into consideration.

Boost factor

Total Luminosity from DM annihilation

$$- L(M) = [1 + B_{sh}(M)] L_{host}(M) - L_{uminosity from DM annihilation if there is no substructure.}$$

$$B_{\rm sh}(M) = \frac{1}{L_{\rm host}(M)} \int dm \frac{dN}{dm} L_{\rm sh}(m) \left[1 + B_{\rm ssh}(m)\right]$$

Boost factor

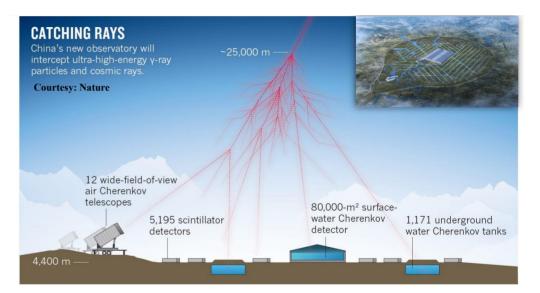
Total Luminosity from DM annihilation

$$- L(M) = [1 + B_{\rm sh}(M)] L_{\rm host}(M) - L_{\rm Luminosity from DM annihilation if there is no substructure.}$$

$$B_{\rm sh}(M) = \frac{1}{L_{\rm host}(M)} \int dm \frac{dN}{dm} L_{\rm sh}(m) \left[1 + B_{\rm ssh}(m)\right] \qquad \text{Shin'ichiro Ando et al. 2019}$$

$$\int_{0}^{20} \frac{1}{222} \frac{1}{224} \frac{1}{224} \frac{1}{226} \frac{1}{$$

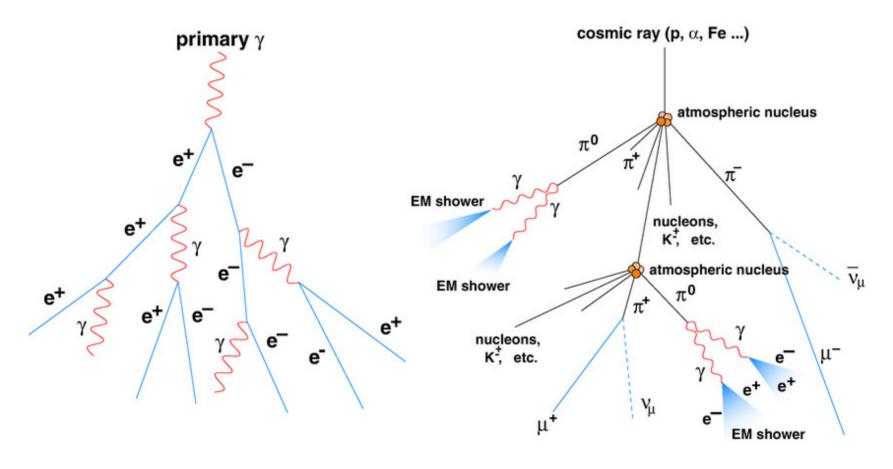
High Energy γ ray detectors


Tibet AS_{γ}

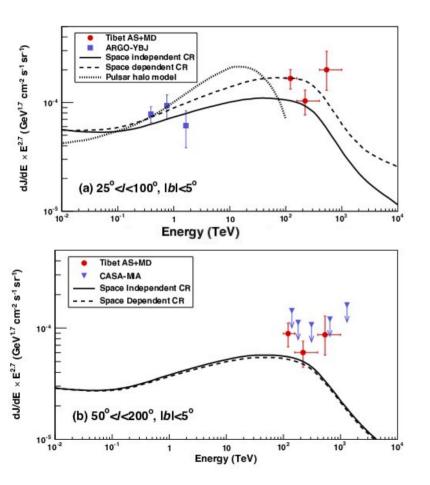
Present Performance
of detectors
Effective area
Angular resolution

Energy resolution

0.5 m² x 597 ~65,700 m² ~0.5° @10TeV ~0.2° @100TeV ~40%@10TeV γ ~20%@100TeV γ LHAASO



Pointing accuracy ~0.1° Angular resolution ~0.3° Energy resolution <20%


~0.3[°] <20%@6TeV

 $https://agenda.infn.it/event/28874/contributions/170169/attachments/94543/129448/ICHEP2022_takita_20220709_presentation.pdf$

Photon vs Cosmic ray shower

Sub-PeV diffuse Gamma rays from the Galactic disk

First detection of sub PeV diffuse γ rays by Tibet AS_{γ}

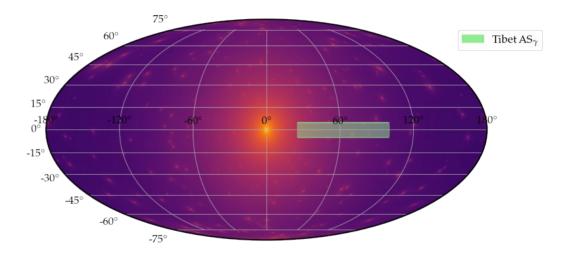
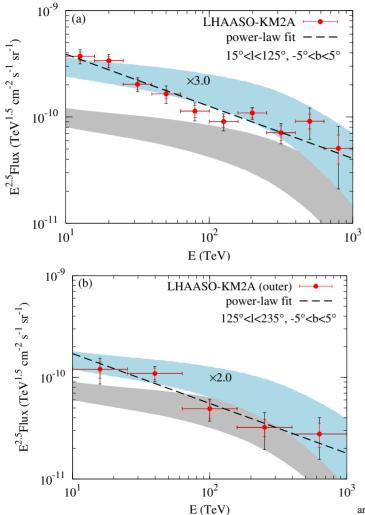



Fig. γ rays observed by Tibet AS $_{\gamma}$ in Galactic plane in the regions of ~ lbl $<5^{\circ}$, $25^{\circ} < l < 100^{\circ}$

Sub-PeV diffuse Gamma rays from the Galactic disk

Diffuse γ rays observed by LHAASO

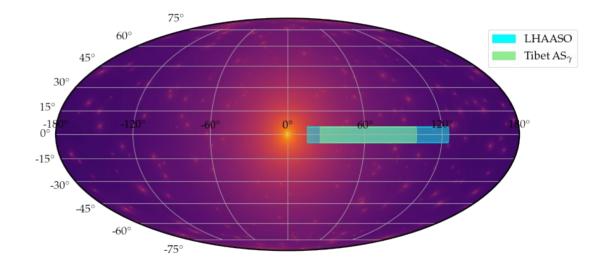
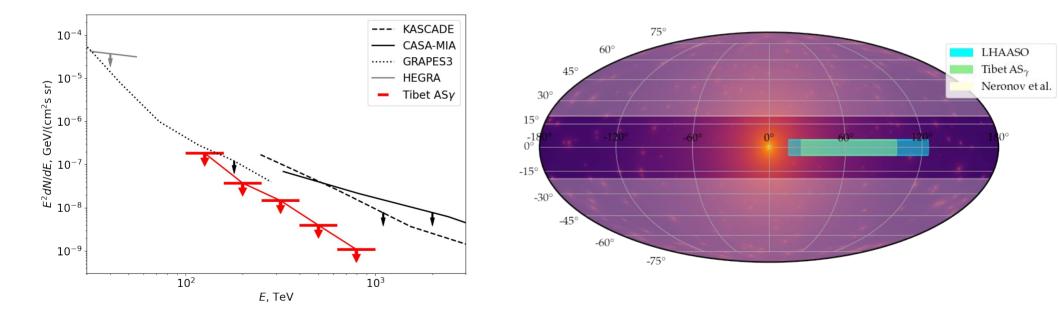
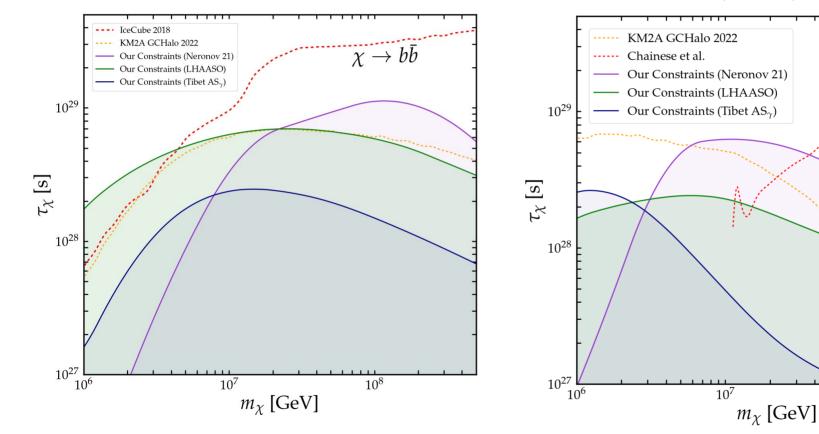


Fig. γ rays observed by LHAASO in inner Galaxy plane region of $|b| < 5^{\circ}$, $15^{\circ} < 1 < 125^{\circ}$ and Tibet AS $_{\gamma}$ in the regions of $|b| < 5^{\circ}$, $25^{\circ} < 1 < 100$


arXiv:2305.05372 (LHAASO Collaboration) 2023

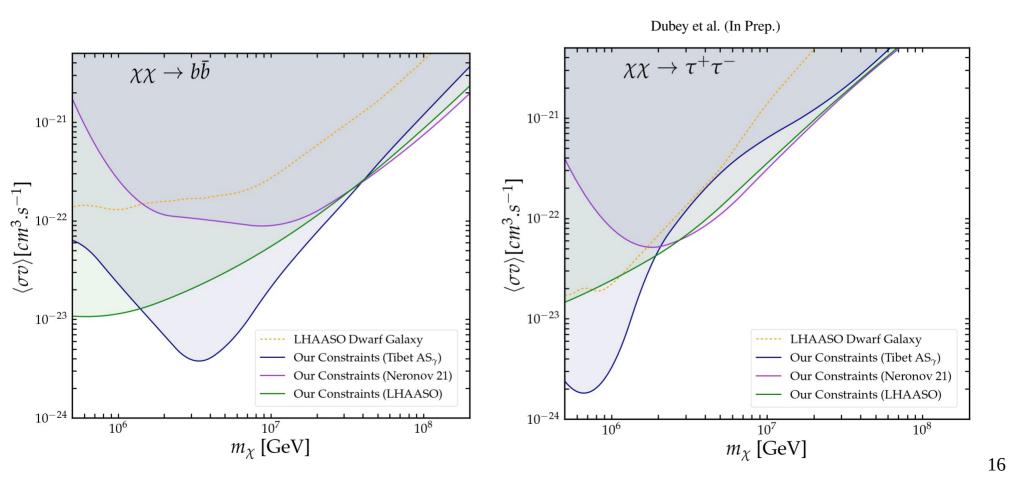
Limit on high Galactic latitude PeV $\gamma\text{-ray}$ flux from Tibet AS $_{\gamma}$


Due to the better sensitivity of Tibet-AS_{γ} and higher energy reach compared to MILAGRO, HAWC, and ARGO-YBJ and also more efficient suppression of background EAS produced by protons and atomic nuclei, Tibet-AS_{γ} observations can be used to constrain the γ ray flux from the sky outside the Galactic plane (|b| > 20 deg.).

Limit on high Galactic latitude PeV γ -ray flux from Tibet AS $_{\gamma}$

Due to the better sensitivity of Tibet-AS_{γ} and higher energy reach compared to MILAGRO, HAWC, and ARGO-YBJ and also more efficient suppression of background EAS produced by protons and atomic nuclei, Tibet-AS_{γ} observations can be used to constrain the γ ray flux from the sky outside the Galactic plane (|b| > 20 deg.).

Results



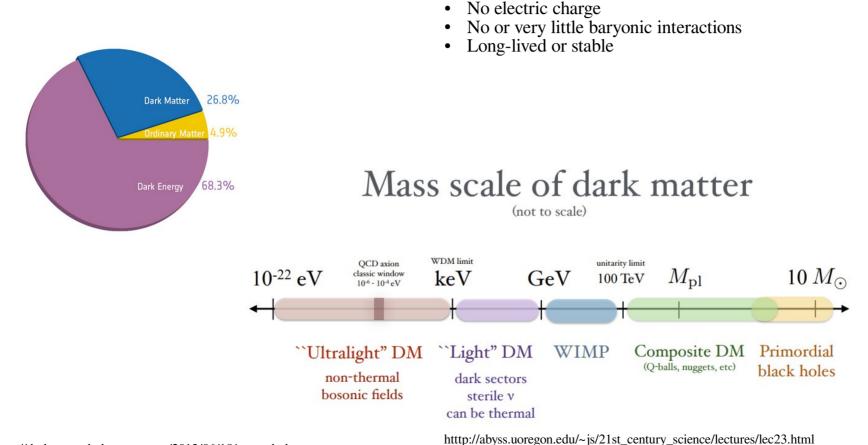
arXiv:2105.05680 (PRD Letter) + Dubey et al. (In Prep.)

10⁸

 $\chi
ightarrow au^+ au^-$

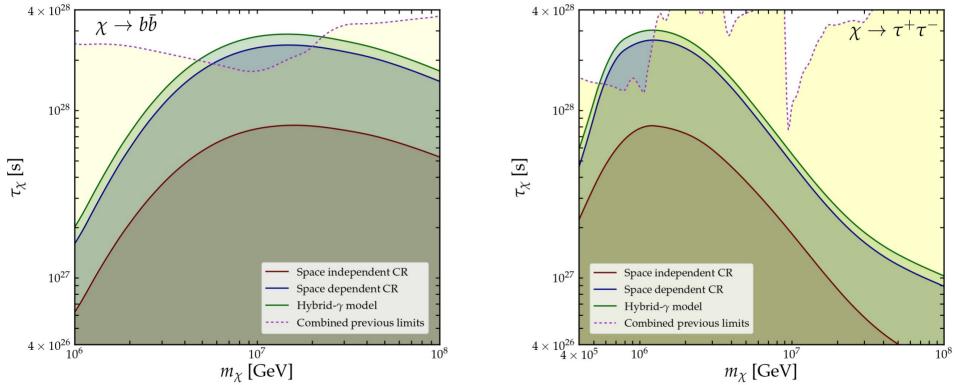
Results

Conclusions


- We have obtained constraints on Dark Matter lifetime and annihilation cross section for different final states using Tibet AS_y and LHAASO observation.
- We have studied the effect of inverse Compton scattering and dark matter substructure which helps put better constrain dark matter parameters.
- We get the most stringent constraints in large region of parameter space for both dark matter decay and annihilation.

Thank You

Email: abhishekd1@iisc.ac.in

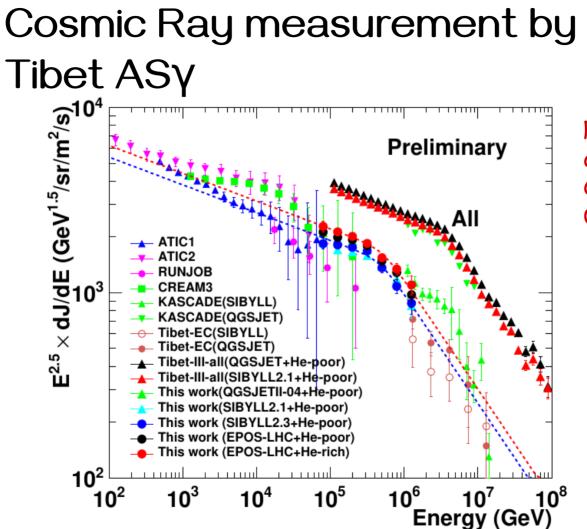
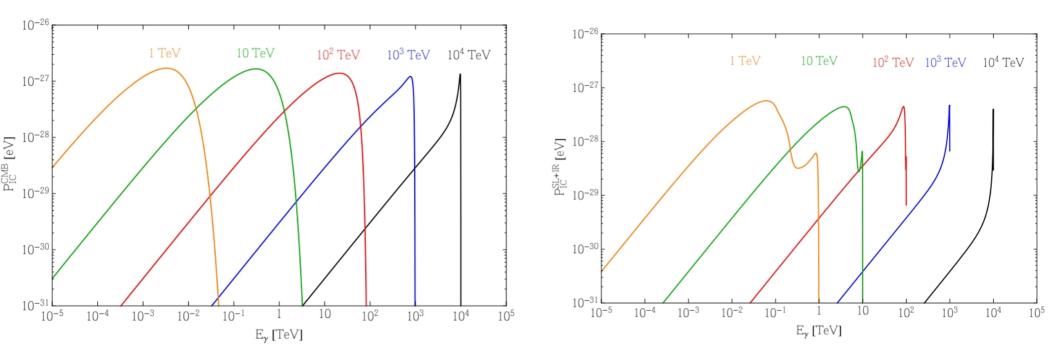
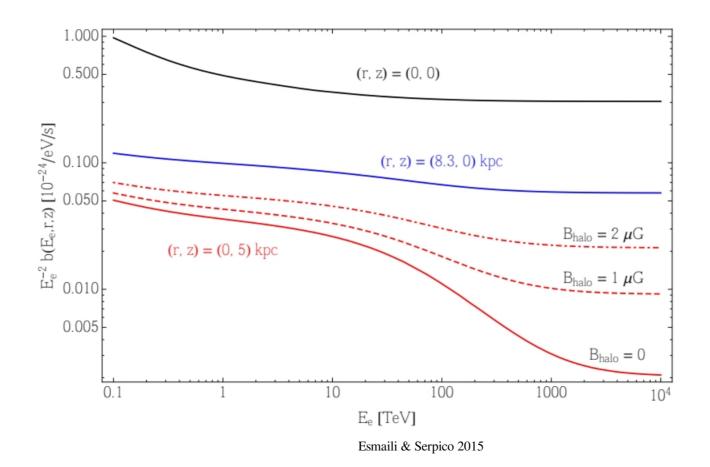


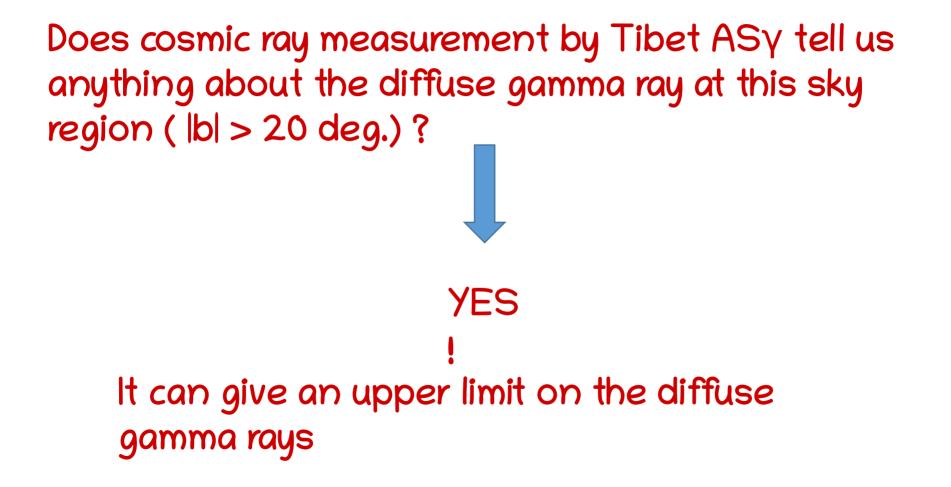
Dark Matter (DM)

https://darkmatterdarkenergy.com/2013/06/18/more-darkmatter-first-planck-results/

Results

arXiv:2105.05680 (PRD Letter)

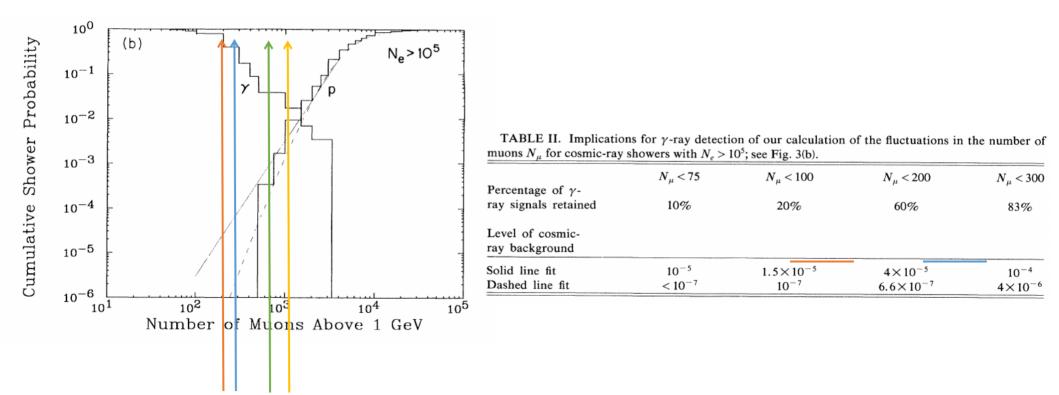
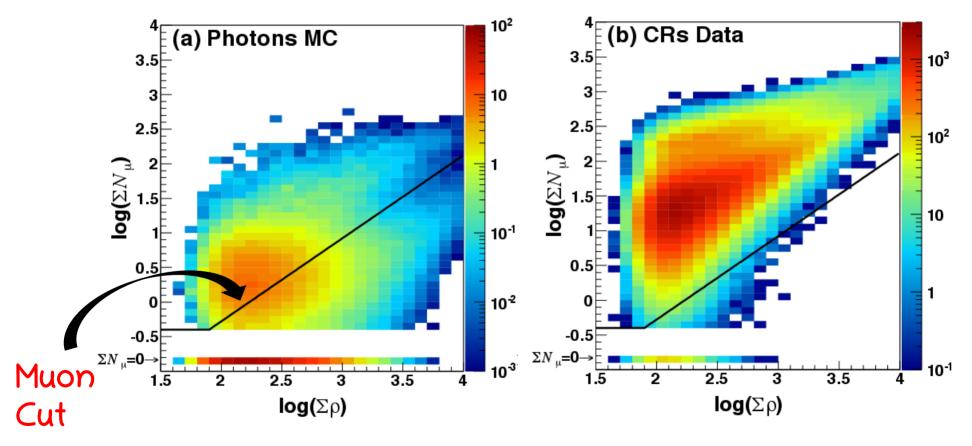




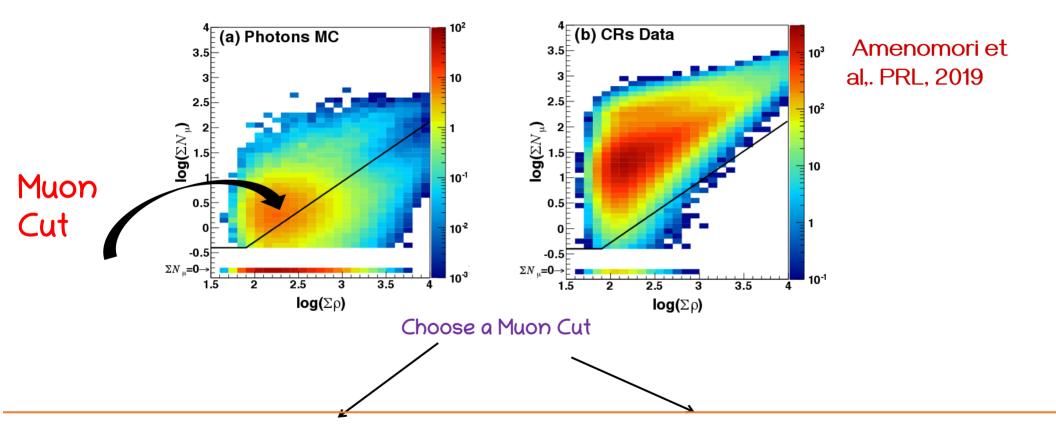

Fig: Amenomori et al., EPJ Web of Conferences 208, 03001 (2019)

P_{IC} and Energy Loss for ICS and Synchrotron

P_{IC} and Energy Loss for ICS and Synchrotron

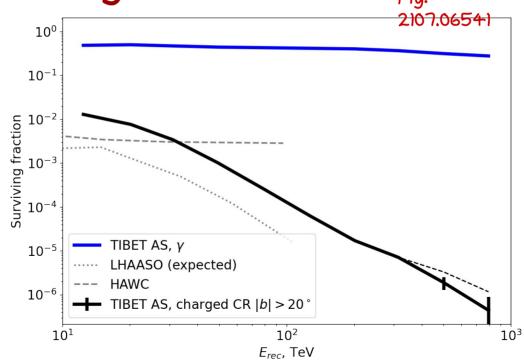
Implication of Muon Cut for Tibet AS_Y


Fig: Gaisser et al., 1991

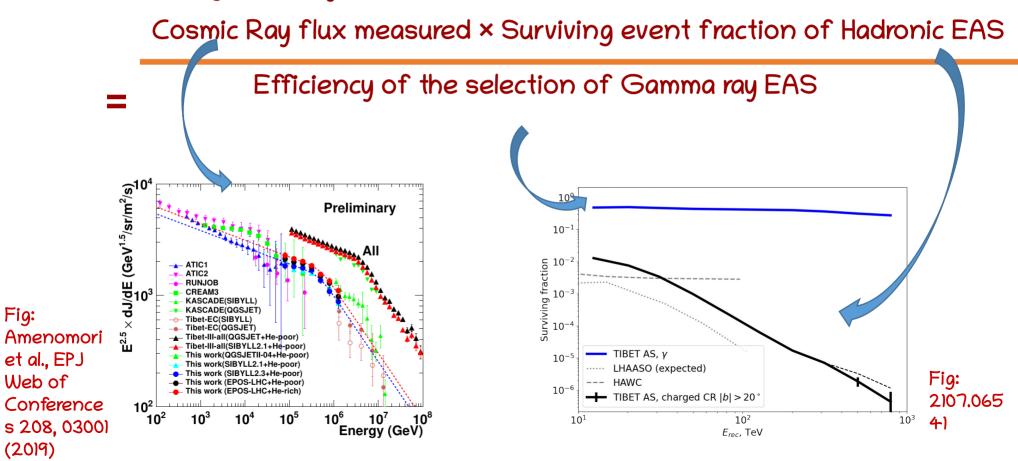
Implication of Muon Cut for Tibet ASy

Amenomori et al,. PRL, 2019


Implication of Muon Cut for Tibet AS γ

Take into account majority of photon induced events

Discard most of the background (CR induced) events


Our detector is not perfect! Even after the tight muon cut some CR induced shower will get in

Upper limits on diffuse gamma ray flux

Upper limit on gamma ray flux

Fig:

Flux of gamma rays from DM decay

ray flux of direct production from DM decay

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{1}{4\pi m_{\chi} \tau_{\chi}} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho(s, b, l) e^{-\tau_{\gamma\gamma}(E_{\gamma}, s, b, l)}$$
$$\frac{d\phi_{\gamma}^{\rm EG}}{dE_{\gamma}} = \frac{\Omega_{\rm DM} \rho_{\rm cr}}{4\pi m_{\chi} \tau_{\chi}} \int \frac{dz}{H(z)} \frac{dN_{\gamma}}{dE_{\gamma}} \Big|_{E_{\gamma}' = E_{\gamma}(1+z)} e^{-\tau_{\gamma\gamma}(E_{\gamma}, z)}$$

ray flux of Inverse compton production from DM decay

$$\frac{d\Phi_{\mathrm{IC}\gamma}}{dE_{\gamma}d\Omega} = \frac{2}{E_{\gamma}} \frac{1}{4\pi m_{\chi} \tau_{\chi}} \int_{m_{e}}^{m_{\chi}/2} dE_{\mathrm{s}} \frac{dN_{e}}{dE_{e}} \left(E_{\mathrm{s}}\right) \int_{\mathrm{l.o.s.}} ds \left(\rho(s,b,l)\right) \int_{m_{e}}^{E_{\mathrm{s}}} dE \frac{\sum_{i} \mathcal{P}_{\mathrm{IC}}^{i}\left(E_{\gamma},E,s,b,l\right)}{b(E,s,b,l)} I\left(E,E_{\mathrm{s}},s,b,l\right) = \frac{1}{2} \int_{\mathrm{IC}}^{\infty} dE \frac{\sum_{i} \mathcal{P}_{\mathrm{IC}}^{i}\left(E_{\gamma},E,s,b,l\right)}{b(E,s,b,l)} I\left(E,E_{\mathrm{IC}}^{i}\left(E_{\gamma},E,s,b,l\right)}\right) = \frac{1}{2} \int_{\mathrm{IC}}^{\infty} dE \frac{\sum_{i} \mathcal{P}_{\mathrm{IC}}^{i}\left(E_{\gamma},E,s,b,l\right)}{b(E,s,b,l)} I\left(E,E_{\gamma},E,s,b,l\right)} = \frac{1}{2} \int_{\mathrm{IC}}^{i}\left(E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} = \frac{1}{2} \int_{\mathrm{IC}}^{i}\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} = \frac{1}{2} \int_{\mathrm{IC}}^{i}\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,s,b,l\right)} I\left(E,E_{\gamma},E,$$

$$\frac{d\Phi_{\mathrm{EG}\gamma}}{dE_{\gamma}}\left(E_{\gamma},z\right) = c\frac{1}{E_{\gamma}}\int_{z}^{\infty}dz'\frac{1}{H\left(z'\right)\left(1+z'\right)}\left(\frac{1+z}{1+z'}\right)^{3}j_{\mathrm{EG}\gamma}\left(E_{\gamma}',z'\right)e^{-\tau\left(E_{\gamma},z,z'\right)}.$$

$$j_{\mathrm{EG}\gamma}^{\mathrm{IC}}\left(E_{\gamma}',z'\right) = \frac{2}{\tau_{\chi}}\frac{\bar{\rho}(z')}{m_{\chi}}\int_{m_{e}}^{m_{\chi}/2}\mathrm{d}E_{e}\frac{\mathcal{P}_{\mathrm{IC}}^{\mathrm{CMB}}\left(E_{\gamma}',E_{e},z'\right)}{b_{\mathrm{IC}}^{\mathrm{CMB}}\left(E_{e},z'\right)}\int_{E_{e}}^{m_{\chi}/2}\mathrm{d}\tilde{E}_{e}\frac{\mathrm{d}\tilde{N}_{e}}{\mathrm{d}\tilde{E}_{e}}$$

m = DM mass, = DM lifetime,

E, E_e = energy of the prompt photons and prompt electrons/positron ρ = DM density profile, which we have taken as NFW profile

= optical depth of photons due to CMB, SL+IR and EBL

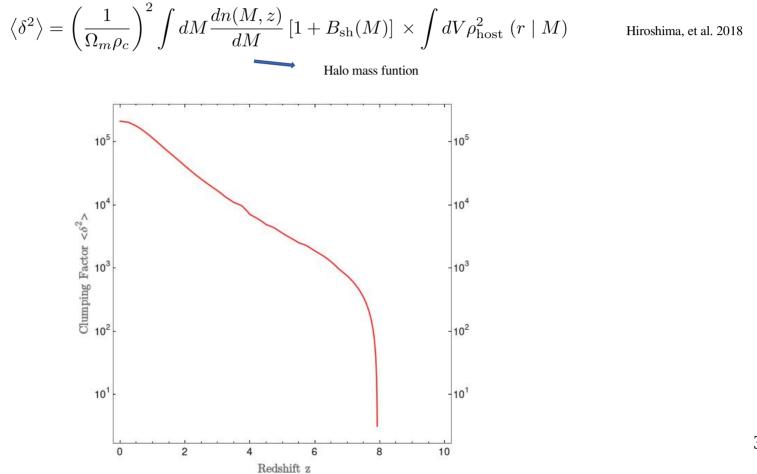
s = line-of-sight distance taken for our galaxy, b, l are Galactic latitude and longitude

P_{IC} is ICS radiative power and b_{IC} is the energy loss of electrons/positrons due to ICS and Synchrotron radiation.

Flux of gamma rays from DM annihilation

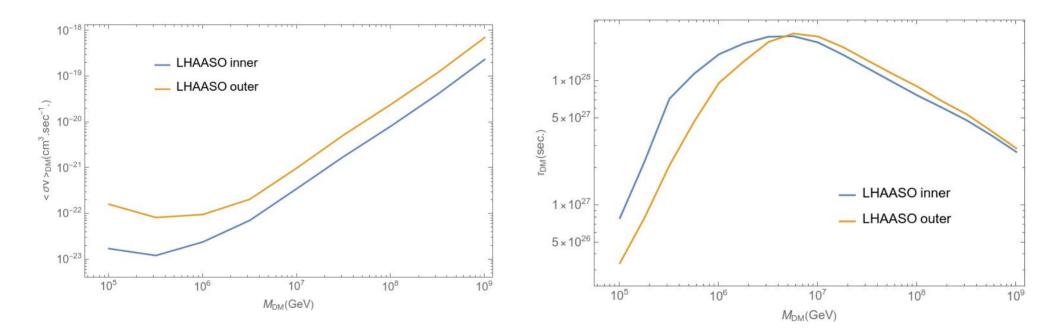
ray flux of direct production from DM annihilation

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho^2(s,b,l) B_{sh}(s,b,l) e^{-\tau_{\gamma\gamma}(E_{\gamma},s,b,l)}$$

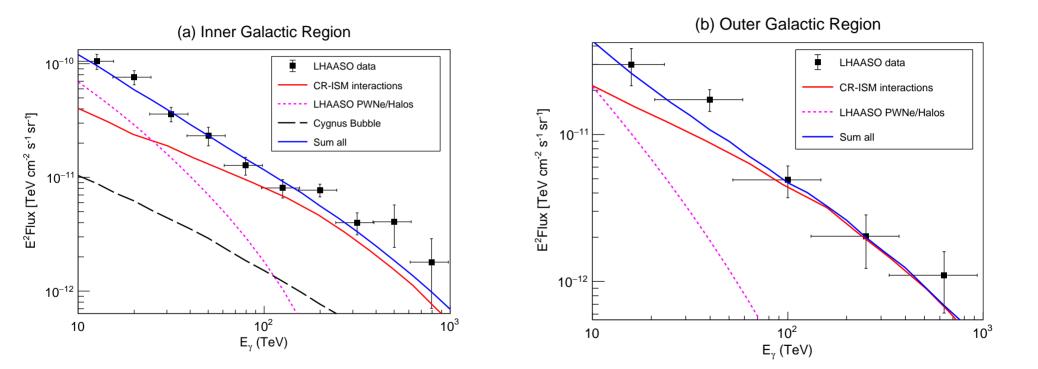

$$\frac{\mathrm{d}\phi_{\gamma}^{\mathrm{EG}}}{\mathrm{d}E_{\gamma}} = \left. \frac{\langle \sigma v \rangle \Omega_{\mathrm{DM}}^2 \rho_{\mathrm{cr}}^2}{8\pi m_{\chi}^2} \int \frac{\mathrm{d}z}{H(z)} \left\langle \delta^2(z) \right\rangle (1+z)^3 \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \right|_{E_{\gamma}'=E_{\gamma}(1+z)} e^{-\tau_{\gamma\gamma}(E_{\gamma},z)}$$

ray flux of inverse Compton production from DM annihilation

$$\begin{split} \frac{d\Phi_{\mathrm{IC}\gamma}}{dE_{\gamma}d\Omega} &= \frac{2}{E_{\gamma}} \frac{\langle \sigma v \rangle}{4\pi m_{\chi}^{2}} \int_{m_{e}}^{m_{\chi}/2} dE_{\mathrm{s}} \frac{dN_{e}}{dE_{e}} \left(E_{\mathrm{s}}\right) \int_{\mathrm{Lo.s.}} ds \frac{1}{2} B_{sh}(s,b,l) \left(\rho(s,b,l)\right)^{2} \int_{m_{e}}^{E_{\mathrm{s}}} dE \frac{\sum_{i} \mathcal{P}_{\mathrm{IC}}^{i}(E_{\gamma},E,s,b,l)}{b(E,s,b,l)} I\left(E,E_{\mathrm{s}},s,b,l\right), \\ \frac{d\Phi_{\mathrm{EG}\gamma}}{dE_{\gamma}} \left(E_{\gamma},z\right) &= c \frac{1}{E_{\gamma}} \int_{z}^{\infty} dz' \frac{1}{H\left(z'\right)\left(1+z'\right)} \left(\frac{1+z}{1+z'}\right)^{3} j_{\mathrm{EG}\gamma} \left(E'_{\gamma},z'\right) e^{-\tau\left(E_{\gamma},z,z'\right)}. \\ j_{\mathrm{EG}\gamma}^{\mathrm{IC}} \left(E'_{\gamma},z'\right) &= 2 \left<\delta^{2}(z)\right> \frac{1}{2} \left<\sigma v\right> \left(\frac{\bar{\rho}(z')}{m_{\chi}}\right)^{2} \int_{m_{e}}^{m_{\chi}/2} \mathrm{d}E_{e} \frac{\mathcal{P}_{\mathrm{IC}}^{\mathrm{CMB}}\left(E_{\gamma},E_{e},z'\right)}{b_{\mathrm{IC}}^{\mathrm{CMB}}\left(E_{e},z'\right)} \int_{E_{e}}^{m_{\chi}/2} \mathrm{d}\tilde{E}_{e} \frac{\mathrm{d}\tilde{N}_{e}}{\mathrm{d}\tilde{E}_{e}} \end{split}$$


 B_{sh} and $<^{2}>$ are Boost factor and Clumping factor due to dark matter substructure. Since the annihilation rate depends on the dark matter density squared (and $<^{2}> \geq <>^{2}$), the presence of the subhalos will boost the gamma-ray signatures from dark matter annihilation.

Boost factor and Clumping factor



32

Inner and outer Galaxy constraints from LHAASO

Background for LHAASO diffuse gamma ray flux

arXiv:2407.15474 ₃₄