The dynamics and detection possibility of a pseudo FIMP in presence of a thermal Dark Matter

16/10/2024

In collaboration with Subhaditya Bhattacharya, Lipika Kolay, Jayita Lahiri and Jahan Thakkar

Dipankar Pradhan

IIT Guwahati, India

$$
\Omega_{\rm DM} h^2 = 0.12
$$

Dark Matter

Bullet Cluster

Galaxy Rotation Curve

• The interaction between DM components play a crucial role in two-component DM case. •Focus: two component DM involving pFIMP together with WIMP and SIMP.

Multicomponent DM

We observe a new DM candidate also, called pseudo-FIMP (pFIMP), only possible in a multi-component framework, and this is a new outcome.

Dynamics of pseudo-FIMP (pFIMP) in presence of a thermal DM Published in: Phys. Rev. D 108, L111702.

Detection possibility of pFIMP in presence of a WIMP Published in: Phys. Rev. D 109, 095031.

What is pseudo FIMP?

pFIMP dynamics in presence of a thermal WIMP

Have a feeble interaction with SM particle but might have sizeable interaction with another DM

Equilibrated with thermal bath having weak interaction with SM bath.

$$
\frac{dY_2}{dx} = \frac{2 \text{ s}}{x H(x)} \left[\frac{\sqrt{Y_{SM}^{\text{eq}}} - Y_{SM}^{\text{eq}} \frac{Y_2^2}{Y_2^{\text{eq}}} \right) \langle \Gamma \rangle_{SM \to 22} + \left(Y_{SM}^{\text{eq}^2} - Y_{SM}^{\text{eq}^2} \frac{Y_2^2}{Y_2^{\text{eq}^2}} \right) \langle \sigma v \rangle_{SM \text{SM-22}} + \left(Y_1^2 - Y_1^{\text{eq}^2} \frac{Y_2^2}{Y_2^{\text{eq}^2}} \right) \langle \sigma v \rangle_{11 \to 22}} \right]
$$
\n
$$
\text{production} \left\{ \frac{\text{Mass hierarchy:}}{\sqrt{1 - Y_1^{\text{eq}^2} \frac{Y_2^2}{Y_2^{\text{eq}^2}}} \langle \sigma v \rangle_{11 \to 22}} \right\}
$$

Supled Boltzmann Equation:

\n
$$
\frac{dY_1}{dx} = -\frac{s}{x H(x)} \left(\frac{Y_1^2 - Y_1^{eq^2}}{y_1^{eq^2}} \frac{dV_1}{dy} + \frac{Y_1^2 - Y_1^{eq^2}}{y_2^{eq^2}} \frac{Y_2^2}{y_1^{eq^2}} \frac{dV_1}{dy_1} + \frac{Y_1^2 - Y_1^{eq^2}}{y_2^{eq^2}} \frac{Y_2^2}{y_1^{eq^2}} \frac{dV_1}{dy_1} \right)
$$

Phys. Rev. D 108, L111702

-
-

Possible pFIMP-SM interactions via WIMP loop

7

WIMP-pFIMP stabilising symmetry: $\mathbb{Z}_{2}\otimes \mathbb{Z}_{2}^{\prime}$

๏Grey lines corresponds to SM particles. ๏Red lines corresponds to WIMP. ๏Black lines corresponds to pFIMP. ๏Tilde lines corresponds to heavy bath particle odd under both symmetry.

$$
\mathcal{L}_{\text{Scalar}} = \frac{1}{2} |\partial_{\mu}\phi|^{2} - \frac{1}{2} \mathfrak{m}_{\phi}^{2} \phi^{2} - \frac{1}{4!} \lambda_{\phi} \phi^{4} - \frac{1}{2} \lambda_{\phi H} q
$$

$$
\mathcal{L}_{\text{VF}} = \overline{\psi} \left[i\gamma^{\mu} \left(\partial_{\mu} + i g \frac{\sigma^{a}}{2} W_{\mu}^{a} + i g' \frac{Y}{2} B_{\mu} \right) - m_{\psi} \right]
$$

$$
+ \sum_{\alpha=1,2} \overline{\psi}_{\alpha} \left(i\gamma^{\mu} \partial_{\mu} - m_{\psi_{\alpha}} \right) \psi_{\alpha} - (Y_{1} \overline{\psi} \widetilde{H} \psi_{1} + Y_{2} \overline{\psi}_{2} \psi_{1} q)
$$

Scalar pFIMP and Fermion WIMP

experiments is above 100 GeV. • Collider search prospect of pFIMP might be possible via thermal WIMP loop.

Phys. Rev. D 109, 095031

SIMP-pFIMP phenomenology focusing low mass regime Ongoing Work

9

 dY_{s} *dx* $=-\frac{S}{\alpha}$ *x* ℋ(*x*) [1 2 $(Y_s^2 - Y_s^{eq^2})\langle \sigma v \rangle_{\chi}$ $\chi^* \rightarrow SM SM +$ **s** 4 $\phi \stackrel{\mathbb{Z}_2}{\rightarrow} -\phi$; χ \mathbb{Z}_3 *ω*³ *χ* . $-\frac{1}{2}$ 2 μ_b^2 $\frac{2}{\phi} \phi^2 - \frac{1}{4}$ 4 ! $λ_φφ⁴ + |∂_μχ|² - μ_χ²$ −*λχ* |*χ***χ*| $\frac{2}{\sqrt{2}}$ 2 $\mu_3(\chi^3 + \chi^{*3})$ $) - \frac{1}{2}$ 2 $\lambda_{\phi H}$ $\phi^2 H^\dagger H$ $\mathcal{L} = \mathcal{L}_{\text{SM}} + \mu_H^2 H^{\dagger} H - \lambda_H (H^{\dagger})$ $H)^{2} +$ 1 −*λχ^H* |*χ*| $^{2}H^{\dagger}H-\frac{1}{2}$ 2 *λχϕ*|*χ*| $^{2}\phi^{2}$.

$$
\frac{dY_{\phi}}{dx} = \frac{2 \text{ s}}{x \text{ } \mathcal{H}(x)} \left[\frac{1}{\text{s}} \left(Y_{\text{h}}^{\text{eq}} - Y_{\text{h}}^{\text{eq}} \frac{Y_{\phi}^2}{Y_{\phi}^{\text{eq}^2}} \right) \langle \Gamma \rangle_{\text{h} \to \phi \text{ } \phi} + \left(Y_{\text{SM}}^{\text{eq}^2} \right)
$$

pFIMP-SIMP Model

The genesis and detectability of a pFIMP under \mathbb{Z}_{N} symmetry Ongoing Work

Motivation • Two DM components are naturally stable with two distinct

- discrete symmetries.
- **naturally stable**.
- would always be a pFIMP.
- \bullet We study such possibilities under \mathbb{Z}_N symmetry.

• However, the heavier dark sector particle can also be made **kinematically stable** under one symmetry and lightest one

• The DM, which has feeble interaction with the visible sector,

Two complex scalar DM under \mathbb{Z}_3 symmetry

Tree and 1 – loop and 2 – loop level decays of $\chi_2 \; (\rm m_{\chi_2} > m_{\chi_1})$:

Two complex scalar DM under \mathbb{Z}_3 symmetry

A generic two – component DM scenario under discrete symmetry, \mathbb{Z}_3 :

 χ_1 , and both would be contributed in DM relic. • If we ignore those red color terms, which are very tiny, these scenarios are reduced to a scenario where both DMs are absolutely stable only under mass kinematics. Θ A, D $\xrightarrow{\text{absence of red terms}} \mathbb{Z}_3 \otimes \mathbb{Z}_3'.$ \bullet B, C $\xrightarrow{\text{absence of red terms}} \mathbb{Z}_6$ (q₁ = 1, q₂ = 2) and (q₁ = 2, q₂ = 1). $\underset{\bullet}{\bullet}$ E, F $\xrightarrow{\text{absence of red terms}} \mathbb{Z}_6$ ($q_1 = 1$, $q_2 = 4$) and ($q_1 = 4$, $q_2 = 1$).

f two DMs: χ_1 and χ_2 under \mathbb{Z}_3 symmetry

 $= 2 \,\, {\rm or} \,\, q_1 = 2, \,\, q_2 = 1$

 $\left|\chi_{2}\right|^{4}, \ \chi_{1}\chi_{2}H^{\dagger}H, \ \chi_{1}^{2}\chi_{2}^{2}, \ \left|\chi_{1}\chi_{2}\right|^{2}, \ \chi_{2}^{2}\chi_{1}^{*}, \ \chi_{1}^{2}\chi_{2}^{*}, \ \chi_{1}\chi_{2}(\left|\chi_{1}\right|^{2}+\left|\chi_{2}\right|^{2})$

 $\chi_2|^4$, $\chi_1 \chi_2 H^{\dagger}H$, $\chi_1^2 \chi_2^2$, $|\chi_1 \chi_2|^2$, $\chi_2^2 \chi_1^*$, $\chi_1^2 \chi_2^*$, $\chi_1 \chi_2 (|\chi_1|^2 + |\chi_2|^2)$

• Atter imposing the stabilising conditions, $\tau_{\chi_2} > \tau_{\text{univ}}$ by the minimal choice of couplings associated with red color terms, χ_2 becomes a long-lived DM with a stable lightest DM $\,$

$$
= 2) \text{ and } (q_1 = 2, q_2 = 1).
$$

13

Scenario A

- 2
- -

15

Results

Indirect detection limits on WIMP − pFIMP WIND ON limits detection Indirect

Summary

- Different possibilities of DM, like WIMP, SIMP or FIMP, account for correct relic density via freeze-out or freeze-in. Having more than one DM component greatly enhances the phenomenological possibility via DM-DM interaction.
- A new kind of DM, pseudo-FIMP (pFIMP), can arise in two-component DM scenarios having a thermal DM, providing loop-induced search prospects. • The pFIMP could also be achievable in the sub-GeV regime in the
- presence of SIMP.
- We can obtain two dark matter candidates with a single discrete symmetry: one is a long-lived particle (LLP), while the other remains a stable dark matter candidate. 16

