

Viability of Boosted Light Dark Matter in a Two-Component Scenario

Arindam Basu

XVII International Conference on Interconnection between particle Physics and Cosmology PPC 2024 IIT Hyderabad, University of Hyderabad

Reference:

"Viability of Boosted Light Dark Matter in a Two-Component Scenario", A Basu, A Chakraborty, N. Kumar, and S. Sadhukhan (<u>https://arxiv.org/abs/2310.09349</u>)

Motivation:

- The existence of Dark Matter (DM) is proven only through indirect gravitational probes.
- Astrophysical observation predicts the amount of DM (~ 26.8 %) of the total energy of the Universe.
- A Plethora of DM direct and indirect detections for WIMP are only of minimal success.
- We are studying **light DM (MeV-GeV scale)**.
- The light DM can receive sufficient energy for the nuclear recoil if it is **boosted**.
- Detection prospects get better with the **boost**.

Model Description:

Model Description: Fields & Charge Assignments:

Particle Name	$SU(2)_L$ Charges	$U(1)_Y$ Charges	Z_2 Charges	$Z_2^{\rm DM}$ Charges			
Scalar Fields							
Φ_1	2	1	1	1			
Φ_2	2	1	-1	1			
ϕ_3	1	0	1	-1			
Fermionic Fields							
N	N 2		1	-1			
χ	1	0	1	-1			

- Φ_3 is the scalar MeV scale DM.
- Mixing of N and χ produces the heavy fermionic DM χ_1 . $m_{\chi 1} \sim 100 \text{ GeV}$.
- Φ_2 is even under Z_2^{DM} -> suggests that it provides a portal interaction and does not serve as a DM candidate.
- Odd under Z_2^{DM} -> suggests stable DM candidate.

Dark Matter: Relic Density Aspects: MeV scale Scalar Singlet DM:

Feynman Diagrams for the scalar DM annihilation

 $\sigma_{\phi_3} = \sigma(s)_{\phi_3\phi_3 \to f\bar{f}} + \sigma(s)_{\phi_3\phi_3 \to N_R\nu_L} + \sigma(s)_{\phi_3\phi_3 \to HH} + \sigma(s)_{\phi_3\phi_3 \to hh} + \sigma(s)_{\phi_3\phi_3 \to hH}$

Dark Matter: Relic Density Aspects: Scalar Singlet DM:

$$\frac{dY_{\phi_3}}{dx} = -\frac{1}{x^2} \frac{s(m_{\phi_3})}{H(m_{\phi_3})} \langle \sigma v \rangle_{\phi_3 \phi_3 \to SM} (Y_{\phi_3}^2 - Y_{\phi_3, eq}^2)$$

$$Y_{\phi_3,eq} = 0.145 \frac{g_i}{g_*} x^{3/2} e^{-x}$$

$$\Omega_{\phi_3} h^2 = \frac{m_{\phi_3} s_0 Y_{\phi_3}(\infty)}{\rho_c / h^2}$$

Scalar DM				
Mass	Relic density			
10 MeV	2.43×10^{-8}			
100 MeV	2.10×10^{-2}			
1 GeV	36.9			

Dark Matter: Relic Density Aspects: Scalar Singlet DM:

$$\Omega h^2 = \frac{2.14 \times 10^9 \text{ GeV}^{-1}}{\sqrt{g_*} M_{pl}} \frac{1}{J(x_f)}$$

$$J(x_f) = \int_{x_f}^{\infty} \frac{\langle \sigma v \rangle(x)}{x^2} dx$$

< σv > is the thermal averaged cross-section

References: <u>https://arxiv.org/pdf/0804.2741</u> <u>https://arxiv.org/pdf/2006.09721</u> <u>https://arxiv.org/pdf/1808.01272</u>

Allowed window 2-120 MeV

Dark Matter: Relic Density Aspects: Fermionic DM:

Feynman Diagrams for the fermionic DM annihilation

Dark Matter: Relic Density Aspects: Fermionic DM:

$$\frac{dY_{\chi_1}}{dx} = -\frac{1}{2} \frac{1}{x^2} \frac{s(m_{\chi_1})}{H(m_{\chi_1})} \langle \sigma v \rangle_{\chi_1 \chi_1 \to SM} (Y_{\chi_1}^2 - Y_{\chi_1, eq}^2)$$

$$Y_{\chi_1,eq} = 0.145 \frac{g_i}{g_*} x^{3/2} e^{-x}$$

$$\Omega_{\chi_1} h^2 = \frac{m_{\chi_1} \ s_0 \ Y_{\chi_1}(\infty)}{\rho_c / h^2}$$

Fermion DM				
Mass	Relic density			
45 GeV	2.07×10^{-3}			
$65 \mathrm{GeV}$	0.67			
200 GeV	22.16			

Dark Matter: Relic Density Aspects: Fermionic DM:

$$\Omega_{\chi_1} \ h^2 = rac{2.14 imes 10^9 \ x_f}{\sqrt{g^*} M_{pl} \langle \sigma v
angle}$$

References: <u>https://arxiv.org/pdf/1812.06505</u> https://arxiv.org/pdf/1510.02760

Allowed window 40 GeV – 50 GeV.

Higgs portal interaction between the two DM candidates serves as the connector between the two DM candidate

 $m_{\chi_1}=$ 45 GeV $m_{\phi_3}=$ 20 MeV

The Scalar DM ϕ_3 with 50 MeV mass, contributes >50% of total DM.

Allowed mass window for fermionic DM χ_1 increased up to 30 GeV – 70 GeV.

- Ωh² = 0.1199 ± 3*0.0027 (3σ upper limit ≤ 0.13 for the relic density measured by the Planck experiment) is used.
 - The yellowish-green makes a boundary on the mχ1 mφ3 plane for the under-abundant relic density.
- The white region is ruled out due to the overabundance of the relic density.

Boosted DM:

$$s = 4m_{\phi_3}^2 + 4m_{\phi_3}^2 \Big(1 - rac{1}{\gamma_{\phi_3}^2} \Big)$$

 $\gamma_{\phi_3} \sim \frac{m_{\chi_1}}{m_{\phi_3}}$

No boost case -> $\gamma_{\varphi 3} = 1$

resonance condition $s=m_{H}^{2}$

or, $m_{\phi_3} = m_H/2$

 $m_{H} = 20 \text{ MeV}$ is taken as a benchmark

Resonance is due to the H-dominated "s" channel annihilation.

With boost case, for say $m_{\chi 1}=45~{
m GeV}$ The COM energy $spprox 8m_{\phi_3}^2$ Thus, the resonance condition $s=m_H^2$ gives, $m_{\phi_3}=m_H/(2\sqrt{2})$

Conclusion:

- *Goal:* Relic aspects study of Two-Component DM (Depending on a particular BSM Model).
- What we are doing: The DM-DM interaction is allowed through the Higgs portal, which leads to a two-component model. We showed that the relic aspects change in the Boosted case due to the DM-DM interaction.
- *Final Results:* We got a mass range for the two DM components and can comment that for some particular choice of masses, the **light scalar DM contributes >50% of total DM**.

Thank You

Theoretical constraints and Benchmark Points :

- Theoretical constraints such as stability of vacuum and tree-level perturbative unitarity.
- The Higgs invisible bound. SM Higgs boson (h) (125 GeV) invisible BR is <10%. arxiv: 2303.01214
- Z invisible bound.

We chose mH= 20 MeV. Also checked other values (50,100) MeV. No such variation in relic density observed, other than the shift of resonance drop.

The chosen parameter space for our work is,

Benchmark point							
m_H	n_H m_h		$\tan eta$	κ_1	κ_2	Y_{ν}	m_{N_R}
20 MeV	125 GeV	89.998	1.8×10^{-4}	0.01	0.002	1	$10 \mathrm{MeV}$

A few selected couplings						
λ_{hHH} (GeV)	λ_{hhH} (GeV)	λ_{hhh} (GeV)	$\lambda_{\phi_3\phi_3h}$ (GeV)	$\lambda_{\phi_3\phi_3H} \ ({ m GeV})$	$\lambda_{ u_L N_R h}$	$\lambda_{\nu_L N_R H}$
-1.04	0.001	63.5	2.45	3.3×10^{-4}	-2.83×10^{-5}	0.70