Exploring flavor-dependent long-range interactions in atmospheric neutrino oscillations at DeepCore

ggarg@icecube.wisc.edu

for the IceCube collaboration

Institute of Physics (IOP), Bhubaneswar & Aligarh Muslim University (AMU), Aligarh, India 47th International Conference on Interconnections between Particle Physics and Cosmology IIT Hyderabad, India

Neutrino Flavor Oscillations

- Neutrino flavor changes as it propagates in space
- First experimental proof for existence of BSM physcis
- We have a great precision on oscillation parameters value
- Offers an unparallel window to probe subtle BSM scenarios

U(1)' Extension of Standard Model (SM)

• Standard Model is a gauge theory based on,

 $SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y}$

• It requires extension to accommodate neutrino mass, mixing, baryon asymmetry, dark matter, etc.

U(1)' Extension of Standard Model (SM)

where, $X = L_e - L_\mu \& L_e - L_\tau$

- These are abelian flavor-dependent symmetries
- This model does not require any exotic particles
- These symmetries are sourced by the electrons

- M. Bustamante & S. K. Agarwalla, PRL122(2019)
- X.-G. He, G.C. Joshi, H. Lew, R. R. Volkas, <u>PRD 43 R22 (1991)</u>
- A. Khatun, T. Thakore, & S. K. Agarwalla, JHEP04(2018)023
- S. S. Chatterjee, A. Dasgupta, S. K. Agarwalla, JHEP12(2015)167
- M. Singh, M. Bustamante, S. K. Agarwalla, <u>JHEP08(2023)101</u>
- S. K. Agarwalla, et. al, <u>JHEP08(2023)113</u>

U(1)' Extension of Standard Model (SM)

- $U(1)'_{x}$ must break down to accommodate neutrino mixing
- Only one symmetry can be gauged in an anomaly free way at a time
- Gives rise to an additional flavor-dependent neutral current interaction
- Interaction lagrangian, $\mathcal{L} = g' \psi \gamma^{\alpha} Z'_{\alpha} \psi$
- Z' gauge boson may be very heavy or very light in nature
- Z' can also act as a dark matter candidate
- A very light Z' gauge boson ($m_{z'} \leq 10^{-18} \text{ eV}$) gives rise to leptonic

flavor-dependednt Long Range neutrino interactions

Can we constrain / discover the flavor-dependent neutral current long-range interactions using neutrino oscillations in IceCube DeepCore?

Long-Range Interaction (LRI)

• Under $L_e^{-} L_{\beta} (\beta = \mu, \tau)$ symmetry, a neutrino located at a

distance d from a collection of N_e electrons experiences

a Yukawa like potential,

$$V_{e\beta} = G'^2_{e\beta} \frac{N_e}{4\pi d} e^{-m'_{e\beta}d}$$

where $m^{\prime}_{_{e\!\beta}}$ is the mass of mediating $Z^{\prime}_{_{e\!\beta}}$ boson

LRI strength depends on the electron content of the

celestial objects within the interaction range d

Step-like transitions in potential is due to the

contributions from various sources at different distances

Long-Range Interaction (LRI)

The electrons inside the Sun can generate a flavor-dependent long-range potential V_{eµ/eτ} at the Earth's surface which has the following form,

$$V_{e\mu/e\tau}(R_{SE}) = \alpha_{e\mu/e\tau} \frac{N_e^{\odot}}{R_{SE}} \approx 1.3 \times 10^{-14} \,\mathrm{eV}\left(\frac{\alpha_{e\mu/e\tau}}{10^{-53}}\right)$$

where, N_{ρ}^{\odot} denotes the total number of electrons ($\approx 10^{57}$) inside the Sun,

 $\alpha_{e\mu/e\tau} = g_{e\mu/e\tau}^2 / 4\pi$ is the fine structure constant of the coupling, R_{SE} is the Sun - Earth distance ($\approx 1.5 \text{ x } 10^{13} \text{ cm} = 7.6 \text{ x } 10^{26} \text{ GeV}^{-1}$)

• LRI potential due to the Earth can be neglected safely as,

 $V_{e\mu/e\tau} (R_E) \approx 0.05 V_{e\mu/e\tau} (R_{SE})$

• We can neglect the contribution to LRI from earth's electron

LRI Hamiltonian

• The effective Hamiltonian for neutrino propagation in Earth matter in the flavor basis in presence of LRI,

$$H_{f} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^{2}}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^{2}}{2E} \end{bmatrix} U^{\dagger} + \begin{bmatrix} V_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} \zeta & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & \eta \end{bmatrix}$$
$$Vacuum \qquad Std. Matter \qquad V(LRI)$$
• For L_e- L_µ symmetry, $\zeta = V_{e\mu}, \xi = -V_{e\mu} & \eta = 0$
$$V_{LRI} = \begin{cases} Diag (V_{e\mu}, -V_{e\mu}, 0) \\ Diag (V_{er}, 0, -V_{er}) \end{cases}$$

- For antineutrinos, $V_{CC} \& V_{e\mu/e\tau}$ change their sign
- When $V_{e\mu/e\tau} \approx \Delta m_{31}^2 / E \approx V_{CC} \approx 10^{-13} \text{ eV}$, its effect can be observed in atmospheric neutrino oscillations

Effect of $L_{\rm e}^{}\text{-}\ L_{\mu}^{}$ on Oscillation Probabilities

Effect of $L_e^- L_\mu^-$ on Oscillograms

•
$$V_{e\mu} = 1.3 \times 10^{-13} \, eV$$

- Oscillation valley gets almost disappeared in presence of LRI
 - Larger difference is at larger baseline and lower & intermediate energy region

IceCube Neutrino Observatory

- 1 km³ neutrino observatory at South Pole
- Priory built for (> 100 GeV) high energy v's
- ~100's / year astrophysical v's
- 5160 DOMs on 86 vertical strings inside the ice

IceCube DeepCore

To explore the diffuse and point source v emission

Denser spacing

existence etc.

Event Signatures at IceCube DeepCore

 10^{-2}

 10^{-3}

10-

Onsite Filter

ICECUBE PRELIMINARY

Fast Data-MC

Agreement

Tighter Muon

Cut

Fast Noise & µ

Rejection BDTs

Final CNN

Cuts

- 9.28 years of MC data sample (2012 2021)
- ~ 192k event statistics
- Various filters to eliminate noise and atm. μ contamination

Analysis Setup

Observables	No. of bins	Range	Step
Energy	12	[5, 100]	log
Zenith	10	[0, -1]	linear
PID	3	[0.0, 0.25, 0.55, 1]]	linear

Oscillation Param.	Nominal	Range	Fixed/Free
θ_{12}	33.41	[31.31, 35.74]	Fixed
θ ₁₃	8.58	[8.19, 8.89]	Fixed
θ ₂₃	47.5047	[38, 52]	Free
δ _{CP}	0	[0, 360]	Fixed
Δm_{21}^2	7.41e-05	[6.82e-05,8.03e-05]	Fixed
Δm_{31}^2	2.47467e-03	[0.001, 0.004]	Free

$$\chi_{\text{mod}}^2 = \sum_{i \in \text{bins}} \frac{(N_i^{\text{exp}} - N_i^{\text{obs}})^2}{N_i^{\text{exp}} + (\sigma_i^{\text{exp}})^2} + \sum_{j \in \text{syst}} \frac{(s_j - \hat{s_j})^2}{\sigma_{s_j}^2}$$

$$\Delta \chi^2 = \min_{\{\text{sys}\}} \left[\chi^2 \left(\text{SM} + \text{LRI} \right) - \chi^2 \left(\text{SM} \right) \right]$$

Systematic Uncertainties

• Honda flux uncertainties

- Cosmic ray spectrum
- Pion & Kaon production uncertainties

Osc parameters uncertainties

- $\circ \qquad \theta_{23}\,\&\,\Delta m^2_{31}\,\text{uncertainty}$
- Cross section uncertainties
 - Axial mass uncertainty for resonance and quasielastic events
 - GENIE CSMS transition for DIS

• Detector and Ice uncertainties

- Optical efficiency of the photo sensor
- Ice scattering and absorption
- Birefringence (double refraction of light due to anisotropy of ice)
- Muon Light Yield (photon propagation in the ice from muons)
- Atmospheric muon scale
- Neutrino event counts normalization

Simulated Event difference and χ^2 Distribution for L_e-L_µ

Sensitivity Results

Present Experimental Bounds on LRI

Experiment	Bounds on LRI Potential	Reference	
	$V_{e\mu / e au}$ (eV)		
Super-Kamiokande*	$V_{e\mu} < 5.5 \times 10^{-13} (90\% \text{ CL})$ $V_{e\tau} < 6.4 \times 10^{-13} (90\% \text{ CL})$	A. Joshipura & S. Mohanty PLB 584 (2004)	
Solar + KamLAND*	$V_{e\mu} < 4.4 \times 10^{-14} (3\sigma)$ $V_{e\tau} < 3.3 \times 10^{-14} (3\sigma)$	A. Bandyopadhyay, A. Dighe, & A. S. Joshipura PRD 75 093005 (2007)	
IceCube DeepCore**	$V_{e\mu} < 0.98 \times 10^{-14} (90\% \text{ CL})$ $V_{e\tau} < 1.01 \times 10^{-14} (90\% \text{ CL})$	Present work sensitivity**	

- * These results are not from the collaborations rather an independent study with various approximations like $\theta_{13} = 0 \& \theta_{23} = 45$
- ** First full-fledged LRI analysis from any collaboration in the context of neutrino oscillations

Take Home Messages

- The huge statistics of DeepCore allows us to identify subtle deviation from the Standard Model.
- We are exploring the U(1)' symmetry using DeepCore data sample.
- For the first time, we are showing that DeepCore has the ability to constrain the Long range interactions.
- We can put the best constrain using the DeepCore's 9.28 years of low energy data sample.

at ar

6 -- 6 Den pri

wind in .

0

*** ** · *

Backup slides

Effective Neutrino-Matter Interactions

• U(1)' Lagrangian for propagation in ordinary matter has the most general form,

$$\mathcal{L}_{Z'}^{matter} = -g' \big(a_u \, \bar{u} \gamma^{\alpha} u + a_d \, \bar{d} \gamma^{\alpha} d + a_e \, \bar{e} \gamma^{\alpha} e \\ + b_e \, \bar{\nu}_e \gamma^{\alpha} P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^{\alpha} P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^{\alpha} P_L \nu_\tau \big) Z'_{\alpha}$$

Effect of L_e- L_u on Oscillation Probabilities

Effect of L_e- L_, on Oscillation Probabilities (cascade-like)

Effect of L_- L_ on Oscillation Probabilities (track-like)

Simulated Event difference and χ^2 Distribution for L_e-L_t

Effect of LRI on Oscillation Parameters

