Exploring flavor-dependent long-range interactions in atmospheric neutrino oscillations at DeepCore

ggarg@icecube.wisc.edu

for the IceCube collaboration

Institute of Physics (IOP), Bhubaneswar & Aligarh Muslim University (AMU), Aligarh, India 17th International Conference on Interconnections between Particle Physics and Cosmology IIT Hyderabad, India

Neutrino Flavor Oscillations

- Neutrino flavor changes as it propagates in space
- First experimental proof for existence of BSM physcis
- We have a great precision on oscillation parameters value
- Offers an unparallel window to probe subtle BSM scenarios

U(1)' Extension of Standard Model (SM)

Standard Model is a gauge theory based on,

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

It requires extension to accommodate neutrino mass, mixing, baryon asymmetry, dark matter, etc.

U(1)' Extension of Standard Model (SM)

where, $X = L_e - L_\mu \& L_e - L_\tau$

- These are abelian flavor-dependent symmetries
- This model does not require any exotic particles
- These symmetries are sourced by the electrons
- ❖ **[M. Bustamante & S. K. Agarwalla, PRL122\(2019\)](https://link.aps.org/doi/10.1103/PhysRevLett.122.061103)**
- ❖ **[X.-G. He, G.C. Joshi, H. Lew, R. R. Volkas, PRD 43 R22 \(1991\)](https://link.aps.org/doi/10.1103/PhysRevD.43.R22)**
- ❖ **A. Khatun, T. Thakore, & S. K. Agarwalla, [JHEP04\(2018\)023](https://link.springer.com/article/10.1007/JHEP04(2018)023)**
- ❖ **[S. S. Chatterjee, A. Dasgupta, S. K. Agarwalla, JHEP12\(2015\)167](https://link.springer.com/article/10.1007/JHEP12(2015)167)**
- ❖ **M. Singh, M. Bustamante, S. K. Agarwalla, [JHEP08\(2023\)101](https://link.springer.com/article/10.1007/JHEP08(2023)101)**
- ❖ **S. K. Agarwalla, et. al, [JHEP08\(2023\)113](https://link.springer.com/content/pdf/10.1007/JHEP08(2023)113.pdf?pdf=inline%20link)**

U(1)' Extension of Standard Model (SM)

- $U(1)_x$ must break down to accommodate neutrino mixing
- Only one symmetry can be gauged in an anomaly free way at a time
- Gives rise to an additional flavor-dependent neutral current interaction
- Interaction lagrangian, $\mathcal{L} = g' \psi \gamma^a Z'_a \psi$
- Z' gauge boson may be very heavy or very light in nature
- Z' can also act as a dark matter candidate
- A very light Z' gauge boson ($m_z \le 10^{-18}$ eV) gives rise to leptonic

flavor-dependednt Long Range neutrino interactions

Can we constrain / discover the flavor-dependent neutral current long-range interactions using neutrino oscillations in IceCube DeepCore?

Long-Range Interaction (LRI)

 \bullet Under $L_e - L_\beta$ (β = μ, τ) symmetry, a neutrino located at a

distance d from a collection of N_e electrons experiences

a Yukawa like potential,

$$
V_{e\beta}=G'^2_{\ ^{e\beta}}\ \frac{N_e}{4\pi d}e^{-m'_{e\beta}d}
$$

where $\mathop{{\mathsf{m}}}\nolimits_{\mathop{\rm e}\nolimits\beta}$ is the mass of mediating $Z^\flat_{\mathop{\rm e}\nolimits\beta}$ boson

LRI strength depends on the electron content of the

celestial objects within the interaction range d

Step-like transitions in potential is due to the

contributions from various sources at different distances

Long-Range Interaction (LRI)

The electrons inside the Sun can generate a flavor-dependent long-range potential $V_{\text{en}/\text{er}}$ at the Earth's surface which has the following form,

$$
V_{e\mu/e\tau}(R_{SE}) = \alpha_{e\mu/e\tau} \frac{N_e^{\odot}}{R_{SE}} \approx 1.3 \times 10^{-14} \,\text{eV} \left(\frac{\alpha_{e\mu/e\tau}}{10^{-53}}\right)
$$

where, N_e^\odot denotes the total number of electrons $(\approx 10^{57})$ inside the Sun,

 $\alpha_{\rm e\mu/e\tau}$ = ${\rm g}^2_{\rm e\mu/e\tau}/4\pi$ is the fine structure constant of the coupling, $R_{\text{c}E}$ is the Sun - Earth distance ($\approx 1.5 \times 10^{13}$ cm = 7.6 x 10^{26} GeV⁻¹)

LRI potential due to the Earth can be neglected safely as,

 $V_{e\mu/e\tau}$ (R_E) $\approx 0.05 V_{e\mu/e\tau}$ (R_{SE})

We can neglect the contribution to LRI from earth's electron

7

LRI Hamiltonian

● The effective Hamiltonian for neutrino propagation in Earth matter in the flavor basis in presence of LRI,

$$
H_{f} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^{2}}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^{2}}{2E} \end{bmatrix} U^{\dagger} + \begin{bmatrix} V_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} \zeta & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & \eta \end{bmatrix}
$$

\n
$$
\text{Vacuum} \qquad \qquad \text{Std. Matter} \qquad \qquad \text{V(LRI)}
$$

\n• For L_e-L_μ symmetry, $\zeta = V_{eq}$, $\xi = -V_{eq}$ & $\eta = 0$
\n• For L_e-L_ε symmetry, $\zeta = V_{eq}$, $\xi = 0$ & $\eta = -V_{eq}$
\n
$$
\text{V_{LRI}} = \begin{cases} \text{Diag } (V_{eq}, -V_{eq}, 0) \\ \text{Diag } (V_{eq}, 0, -V_{eq}) \end{cases}
$$

- \bullet For antineutrinos, $\rm V_{CC}$ & $\rm V_{e\mu/e\tau}$ change their sign
- When $V_{e\mu/e\tau} \approx \Delta m^2_{31}/E \approx V_{CC} \approx 10^{-13}$ eV, its effect can be observed in atmospheric neutrino oscillations

Effect of L e - L μ on Oscillation Probabilities

Effect of L e - L μ on Oscillograms

- \bullet $V_{e\mu} = 1.3 \times 10^{-13} \text{ eV}$
- Oscillation valley gets almost disappeared in presence of LRI
	- Larger difference is at larger baseline and lower & intermediate energy region

IceCube Neutrino Observatory

Atmospheric
1 Sciences

Tau Appearance

Sterile Neutrinos

Heavy Quark
Production

Non-standard

Interactions

Neutrino Decay

Glaciology

Earth Tomography

Neutrino

Oscillations

SCIENCES

Indirect

Searches for DM

IceCube DeepCore

- For atmospheric neutrino oscillation studies
- To perform Earth's tomography related studies
- Search for BSM scenarios like NSI, LRI, stetrile neutrino existence etc.
- To explore the diffuse and point source ν emission

Event Signatures at IceCube DeepCore

 10^{-2}

 10^{-3}

 10^{-4}

Onsite Filter

ICECUBE PRELIMINARY

Fast Data-MC

Agreement

Cuts

Final CNN

Tighter Muon

Cut

Fast Noise & μ

Rejection BDTs

- \sim 192k event statistics
- Various filters to eliminate noise and atm. μ contamination

Analysis Setup

$$
\chi_{\text{mod}}^2 = \sum_{i \in \text{bins}} \frac{(N_i^{\exp} - N_i^{\text{obs}})^2}{N_i^{\exp} + (\sigma_i^{\exp})^2} + \sum_{j \in \text{syst}} \frac{(s_j - \hat{s}_j)^2}{\sigma_{s_j}^2}
$$

$$
\Delta \chi^2 = \min_{\{sys\}} [\chi^2 (SM + LRI) - \chi^2 (SM)]
$$

Systematic Uncertainties

● Honda flux uncertainties

- Cosmic ray spectrum
- Pion & Kaon production uncertainties

● **Osc parameters uncertainties**

- \circ θ_{23} & Δm^2_{31} uncertainty
- **● Cross section uncertainties**
	- Axial mass uncertainty for resonance and quasielastic events
	- GENIE CSMS transition for DIS

● Detector and Ice uncertainties

- Optical efficiency of the photo sensor
- Ice scattering and absorption
- Birefringence (double refraction of light due to anisotropy of ice)
- Muon Light Yield (photon propagation in the ice from muons)
- **Atmospheric muon scale**
- **[Phys.Rev.D 108 \(2023\) 1, 012014](https://doi.org/10.1103/PhysRevD.108.012014) Neutrino event counts normalization** \bullet **Phys.Rev.D 108 (2023) 1, 012014**

Simulated Event difference and χ^2 Distribution for L_e- L_{$_{\boldsymbol{\mu}}$}

16

Sensitivity Results

Present Experimental Bounds on LRI

- ***** These results are not from the collaborations rather an independent study with various approximations like $\theta_{13} = 0 \& \theta_{23} = 45$
- **** First full-fledged LRI analysis from any collaboration in the context of neutrino oscillations**

Take Home Messages

- **The huge statistics of DeepCore allows us to identify subtle deviation from the Standard Model.**
- **● We are exploring the U(1)' symmetry using DeepCore data sample.**
- **● For the first time, we are showing that DeepCore has the ability to constrain the Long range interactions.**
- **● We can put the best constrain using the DeepCore's 9.28 years of low energy data sample.**

第1

Q - 2 Denison

Angin.

 \circ

VERDAN

 $\mathcal{F}_{\mathbf{A} \cup \mathbf{A} \mathbf{B} \cup \mathbf{A}}$

Backup slides

Effective Neutrino-Matter Interactions

● U(1)' Lagrangian for propagation in ordinary matter has the most general form,

$$
L_{Z'}^{matter} = -g'(a_u \bar{u}\gamma^\alpha u + a_d \bar{d}\gamma^\alpha d + a_e \bar{e}\gamma^\alpha e + b_e \bar{\nu}_e \gamma^\alpha P_L \nu_e + b_\mu \bar{\nu}_\mu \gamma^\alpha P_L \nu_\mu + b_\tau \bar{\nu}_\tau \gamma^\alpha P_L \nu_\tau) Z'_\alpha
$$

Effect of L e - L on Oscillation Probabilities

Effect of L e - L on Oscillation Probabilities (cascade-like)

Effect of L e - L on Oscillation Probabilities (track-like)

26

Simulated Event difference and χ^2 Distribution for L_e- L_r

27

Effect of LRI on Oscillation Parameters

