

Flavor Physics

Why are we sitting here?????

A story full of successes

1950's **Discovery of parity violation** CP le finally VIOLATION 1960's **CP violation in K decays** weak interactions **Lepton** 1970's Discovery of J/ ψ and charm quark **Flavor Universality Violation Inference on top quark mass** 1980's from B mixing 2000's **CP violation in B decays** 2010's **Penta- and tetra-quarks** V. Fedbaron Cartoon presented by N. Cabibbo at the Berkeley conference in 1966 2020's **CP violation in D decays**

What is Lepton Flavor Universality ?

$$
\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs+Yukawa}
$$

- LFU: e, μ, τ are all the same $(\gamma, W, Z) \to$ expect $\Gamma_e = \Gamma_\mu = \Gamma_\tau$
- LFUV: $m_e \neq m_\mu \neq m_\tau$

3

B Anomalies

LFU Observables

- **Markers in blue(red) corresponds** to decay $b \to s$ and $b \to c$ **transitions**
- **Markers in orange indicate theoretical predictions with Zero pull to themselves**
- **Experimental value is then offset its deviation from SM in** *σ*

$$
R_X = \frac{\mathcal{B}(B_c^- \to X \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(B_c^- \to X \mu^- \bar{\nu}_{\mu})}, \ \text{for } X = (\eta_c, J/\psi)
$$

 $R_{J/\psi}^{\rm Exp}=0.71\pm0.17(stat.)\pm0.18(syst.)$

 $R_{J\!/\psi}=0.52\pm0.20$

 $\left| R_{J/\psi}^{\rm CMS} = 0.17^{+0.18}_{-0.17} {}^{+0.21}_{+0.22} {}^{+0.19}_{-0.18} {}^{+0.19}_{-0.18} \right|$

Why B_c decays?

1. It is the lowest bound state having two heavy quarks(b and c)

 $2.$ The \mathbf{B}_c meson lie <u>intermediate in mass an size between charmonium ($c\bar{c}$) and c </u> $\overline{ b}$ bottomonium ($b\bar{b}$) family where the heavy quark interactions are understood well. 3. As it has open flavours, B_c decays weakly but not via strong and radiative modes, **and therefore it is long lived .**

4. The data available in this sector is scant. The masses of Bc excited states and even the ground state of Bc* have not yet been determined.

 σ . The fundamental mechanism for creating the $\bar{b}c$ system is considerably more complex, A t least proportíonal to the fourth power of the strong coupling constant, $\alpha_S^4 \colon \quad q\bar q gg \to (\bar b c) b\bar c$ **6. It provides a fertile ground as well as challenging for both theoretical and experimental studies as it has neutrinos in their final states**

Angular Observables

B_C IS THE MOST CRUCIAL PROBE IN THE UPCOMING FUTURE HL-COLLIDERS ERA

THE PRECISE MEASUREMENTS OF $B_C\,$ DECAYS CAN PLAY AN IMPORTANT ROLE IN TESTING SM AND **SEARCHING FOR THE EVIDENCE OF NP.**

ANGULAR ASYMMETRIES

$$
B_c \to \eta_c (J/\psi) l \nu_l \, B_c \to D(D^*) l \nu_l
$$

 θ_1 = The angle between the direction of the charged lepton in the virtual W frame and the W in the B frame

 θ_V = The angle between the D in the D^{*} frame and the D^* in the B frame

 χ = The angle between the decay planes formed by the virtual W and the D^* in the B frame

$$
b \rightarrow c l \nu_l \quad b \rightarrow u l \nu_l
$$
\n
$$
\frac{d\Gamma_i}{dq^2} = \frac{\mathcal{G}_f^2}{(2\pi)^3} |V_{bq}|^2 \frac{(q^2 - m_l^2)^2}{12M^2q^2} |\vec{k}| H_i
$$
\n
$$
H_U = Re(H_+ H_+^+) + Re(H_- H_-^+) : Unpola
$$
\n
$$
H_L = Re(H_0 H_0^+) : Longitu
$$
\n
$$
H_P = Re(H_+ H_+^+) - Re(H_- H_-^+) : Parity - H_S = 3Re(H_t H_t^+) : Scalar,
$$
\n
$$
H_{SL} = Re(H_t H_0^+) : Scalar - 3
$$
\n
$$
H_{SL} = Re(H_t H_0^+) : Scalar - 3
$$

$$
\vec{H} = H_{+}\hat{e}_{+} + H_{-}\hat{e}_{-} + H_{0}\hat{e}_{0}
$$
\n
$$
\hat{e}_{\pm} = \frac{1}{\sqrt{2}} (\mp \hat{x} - i\hat{y}); \ \hat{e}_{0} = \hat{z}
$$

rized – transversed,

- ıdinal ,
- $-odd$,
	- Longitudinal Interference .

For Pseudoscalar Meson In Final state **For Vector meson In Final State** $\Gamma_V = \Gamma_U + \Gamma_L + \widetilde{\Gamma}_U + \widetilde{\Gamma}_L + \widetilde{\Gamma}_S + \Gamma_P$ $\Gamma_P = \Gamma_L + \widetilde{\Gamma}_L + \widetilde{\Gamma}$ $0^- \rightarrow 0^-$ transition state $0^- \rightarrow 1^-$ transition state

 $\frac{m_l^2}{2a^2}\frac{d\Gamma_i}{da^2}$ $d\Gamma$

RELATIVISTC INDEPENDENT QUARK MODEL

A quark potential model succeeds when it reasonably reproduces available observed data in different hadron sectors. Regardless of the Lorentz structure of the interacting potential used, **a** *phenomenological model is considered reliable if it describes confinement & constituent-level dynamics within the hadron core and predicts various hadronic properties, including decays. Therefore, it is crucial to extend the applicability of a quark model to a broader range of observed data.*

$$
(a, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(a, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
(b, V_0) = \sqrt{4\pi} \left(\frac{i\epsilon_g(r)}{r}\right)
$$
\n
$$
V_0 = \sqrt{4\pi} \left(\frac{i\epsilon_g(r)}{r}\right)
$$
\n
$$
V_0 = \sqrt{4\pi} \left(\frac{i(\vec{\sigma} \cdot \hat{r}) \cdot J_0(r)}{r}\right)
$$
\n
$$
(b, V_0) = \sqrt{4\pi} \left(\frac{i(\vec{\sigma} \cdot \hat{r}) \cdot J_0(r)}{r}\right)
$$
\n
$$
(b, V_0) = \sqrt{4\pi} \left(\frac{i(\vec{\sigma} \cdot \hat{r}) \cdot J_0(r)}{r}\right)
$$
\n
$$
(b, V_0) = \sqrt{4\pi} \left(\frac{i(\vec{\sigma} \cdot \hat{r}) \cdot J_0(r)}{r}\right)
$$
\n
$$
(b, V_0) = (0.017166 \text{GeV}^3, -0.1375 \text{GeV})
$$
\n
$$
V_0 = \sqrt{4\pi} \left(\frac{i\epsilon_g(r)}
$$

For $0^- \rightarrow 0^-$ transition

$$
\mathcal{H}_{\mu}(B_c \to (\bar{c}c/\bar{u}c)_{S=0}) = (p+k)_{\mu}F_{+}(q^2) + q_{\mu}F_{-}(q^2)
$$

$$
\langle S_X(\vec{k})|V_0|S_{B_c}(0)\rangle = \frac{(E_{p_b}+m_b)(E_{p_{c/u}}+m_{c/u})+|\vec{p_b}|^2}{\sqrt{(E_{p_b}+m_b)(E_{p_{c/u}}+m_{c/u})}}
$$

For $0^- \rightarrow 1^-$ transition

$$
\mathcal{H}_{\mu}(B_{c} \to (\bar{c}c/\bar{u}c)_{S=1}) = \frac{1}{(M+m)} \epsilon^{\sigma^{\dagger}} \{g_{\mu\sigma}(p+k)qA_{0}(q^{2}) \}
$$
\n
$$
+ (p+k)_{\mu}(p+k)_{\sigma}A_{+}(q^{2})
$$
\n
$$
+ g_{\mu}(p+k)_{\sigma}A_{-}(q^{2})
$$
\n
$$
+ i\epsilon_{\mu\sigma\alpha\beta}(p+k)^{\alpha}q^{\beta}V(q^{2})\} \qquad (4)
$$
\n
$$
(S_{X}(\vec{k}, \hat{\epsilon}^{*})|V_{i}|S_{B_{c}}(0)) = \frac{i(E_{p_{b}} + m_{b})(\hat{\epsilon}^{*} \times \vec{k})_{i}}{\sqrt{(E_{p_{b}} + m_{b})(E_{p_{b}+k} + m_{c/u})}}
$$

$$
\langle S_{X}(\vec{k},\hat{e^*})|A_i|S_{B_c}(0)\rangle=\frac{(E_{p_b}+m_b)(E_{p_b+k}+m_{c/u})-\frac{|\vec{p_b}|^2}{3}}{\sqrt{(E_{p_b}+m_b)(E_{p_b+k}+m_{c/u})}}
$$

$$
\langle S_X(\vec{k}, \hat{e}^*) | A_0 | S_{B_c}(0) \rangle = \frac{-(E_{p_b} + m_b)(\hat{e}^* \cdot \vec{k})}{\sqrt{(E_{p_b} + m_b)(E_{p_b+k} + m_{c/u})}}
$$

LORENTZ INVARIANT FORM FACTORS

$$
f_{\pm}(q^2) = \frac{1}{2M} \sqrt{\frac{ME_k}{N_{B_c}(0)N_X(\vec{k})}} \int d\vec{p}_b \mathcal{G}_{B_c}(\vec{p}_b, -\vec{p}_b) \mathcal{G}_X(\vec{k} + \vec{p}_b, -\vec{p}_b)
$$

$$
\times \frac{(E_{o_b} + m_b)(E_{p_{c/u}} + m_{c/u}) + |\vec{p}_b|^2 \pm (E_{p_b} + m_b)(M \mp E_k)}{E_{p_b}E_{p_{c/u}}(E_{p_b} + m_b)(E_{p_{c/u}} + m_{c/u})}
$$

$$
\left\{\n \begin{array}{ccc}\n B_c & \to & \eta_c(D) \\
\hline\n 0 & \downarrow & \end{array}\n \right.
$$

 $\overline{B_c}$ \rightarrow *J*/ $\psi(D^*)$

$$
V(q^{2}) = \frac{M+m}{2M} \sqrt{\frac{ME_{k}}{N_{B_{c}}(0)N_{X}(\vec{k})}} \int d\vec{p_{b}} \mathcal{G}_{B_{c}}(\vec{p_{b}}, -\vec{p_{b}}) \mathcal{G}_{X}(\vec{k} + \vec{p_{b}}, -\vec{p_{b}})
$$

$$
\times \sqrt{\frac{(E_{p_{b}} + m_{b})}{E_{p_{b}}E_{p_{c/u}}(E_{p_{c/u}} + m_{c/u})}}
$$

$$
A_0(q^2) = \frac{1}{(M-m)} \sqrt{\frac{Mm}{N_{B_c}(0)N_X(\vec{k})}} \int d\vec{p}_b G_{B_c}(\vec{p}_b, -\vec{p}_b) G_X(\vec{k} + \vec{p}_b, -\vec{p}_b)
$$

$$
\times \frac{(E_{p_b} + m_b)(E_{p_{c/u}}^0 + m_{c/u}) - \frac{|\vec{p}_b|^2}{3}}{\sqrt{E_{\frac{p_b}{2}}E_{p_{c/u}}(E_{p_b} + m_b)(E_{p_{c/u}} + m_{c/u})}} \qquad A_{\pm}(q^2) = \frac{-E_k(M+m)}{2M(M+2E_k)} \left[T \mp \frac{3(M \mp E_k)}{(E_k^2 - \frac{2}{M^2})^3} \right]
$$

RIQM PREDICTIONS

Comparison of q^2 distribution spectra **Of AFB and τ polarization**

LATTICE PREDICTIONS (HPQCD Collaboration)

Opportunities in flavor physics observables in HL- LHC era

Up to *Nature* whether our " Wish for *Discovery* " is Granted … or Not …

Thank You !

BACKUP

Barik and Dash: Phys. Rev.D. 33, 1925 (1986) Pramana-J. Phys: $29(6)$, 543-557 (1987)

GLUONIC CORRECTION

Inside the mesons quark and antiquark are bound. The binding is due to exchange of gluons. Taking one gluon exchange the interaction lagrangian density is in the form of

> $\pounds^g_I = \sum_i J^{\mu \; a}_i A^a_{\mu}(x)$ ∞

(One gluon exchange contribution to the energy conservation)

Where $A^a_\mu(x)$ *is the vector-gluon fields and* $J^{\mu a}_i$ *is the colour current*

Since at small distance the quarks should be almost free, it is reasonable to calculate the shift in the energy of meson core using first oder perturbation theory.

Energy shift is in the form:

$$
\left(\Delta E\right)_{g} = \left(\Delta E\right)_{g}^{\epsilon} + \left(\Delta E\right)_{g}^{M}
$$
\n
$$
\left(\Delta E_{M}\right)_{g}^{\epsilon} = \alpha_{s} \sum_{i,j} \left\langle \sum_{a} \lambda_{i}^{a} \lambda_{j}^{a} \right\rangle \frac{1}{\sqrt{\pi R_{ij}}} \left(1 - \frac{\alpha_{i} + \alpha_{j}}{R_{ij}^{2}} + \frac{3\alpha_{i}\alpha_{j}}{R_{ij}^{4}}\right)
$$
\n
$$
\left(\Delta E_{M}\right)_{g}^{\epsilon} = \alpha_{s} \sum_{i < j} \left\langle \sum_{a} \lambda_{i}^{a} \lambda_{j}^{a} \sigma_{i} \sigma_{j} \right\rangle \frac{256}{\beta\sqrt{\pi}} \frac{1}{\left(3E_{i}^{\prime} + m_{i}^{\prime}\right)\left(3E_{j}^{\prime} + m_{j}^{\prime}\right)} \frac{1}{R_{ij}^{3}}.
$$

So total energy of meson in its ground state is

$$
E_M = E_M^0 + (\Delta E)_{g}^{\epsilon} + (\Delta E)_{g}^M
$$

CENTER OF MASS CORRECTION

- The independent motion of quarks inside the hadron core does not lead to a state of definite total *momentum*
- *The energy associated with the spurious centre of mass motion must provide a further correction to the hadron energy obtained*
	- *This prescription was given by*:

1. Wong C W Phys.Rev. D 24, 1416 (1981) 2. Duck I Phys.Lett. 77, 223, 1978 3. Bertelski J et al. Phys.Rev.D. 29, 1035 (1984)

The static meson core state is decomposed into plane-wave momentum eigen state:

$$
|M(x)\rangle = \int \frac{d^3P}{W_M(P)} \exp(iP, X)\varphi_M(P)|M(P)\rangle
$$

 The inverse relation is:

$$
IM(P) > = {1 \over (2\pi)^3} {W_M(P) \over \varphi_M(P)} \int d^3X exp(-iP. X) IM(X) >
$$

• *The normalisation is as follows:* $\langle M(P)IM(P) \rangle = (2\pi)^{3} 2E_{p} \delta(P - P)$ $\varphi_M^2 = \frac{m(2)}{2} I_M(p)$ (P) (2π) ~
L

• *This permits ready estimates of the centre of mass-momentum P*

$$
\langle P^{2} \rangle = \int d^{3}p \check{I}_{m}(P)P^{2}
$$

$$
= \sum_{q} _{q} \quad \text{Where} \quad = \frac{\left(11E_{q}+m_{Q}\right)(E_{q}^{2}-m_{q}^{2})}{6(3E_{q}+m_{q})}
$$

- *Here* $\langle p^2 \rangle_q$ is the average value of the square of the individual quark-momentum
- *Mass of Meson*: $m_M = [\{E_M^0 + (\Delta E)_{\varrho}^{\in} + (\Delta E)_{\varrho}^{*M}\}^2 \langle P^2 \rangle]^{1/2}$

)