

Lepton Number Violation at Colliders in Linear Seesaw

Praveen Bharadwaj

IISER Bhopal, India

Large lepton number violation at colliders: predictions from the minimal linear seesaw mechanism

> Aditya Batra, ^{1, 2, a} Praveen Bharadwaj, ^{1, b} Sanjoy Mandal,^{3, c} Rahul Srivastava,^{1, d} and José W. F. Valle^{4, e}

Lepton Number Violation (LNV)

Right-handed neutrinos (RHN) appear in many BSM scenarios and violate Lepton Number Symmetry due to the Majorana mass term:

 $\bar N_R^c M_N N_R$

• Can generate small Majorana masses for SM neutrinos via seesaw mechanisms.

> Schechter, Valle, PRD 22 2227 Minkowski, PLB 67 421 Mohapatra, Senjanovic, PRL 44 912

- Could explain the baryon asymmetry via leptogenesis. Fukugita, Yanagida PLB 174 45
- Could provide a viable Dark Matter candidate. Dodelson, Widrow PRL 72 17

Probing LNV

• Collider searches: same-sign dilepton production

G. Anamiati, M. Hirsch, 1607.05641 S. Antusch et al, 2210.10738

Low Scale Seesaw

- In conventional "high-scale" seesaws, the mediators(RHN) are superheavy, and hence kinematically inaccessible at colliders.
- In low-scale seesaw models such as inverse or linear seesaw, the heavy mediators may be produced at high-energy collider setups.
- In inverse seesaw heavy neutrinos are produced via the mixing and due to small mixing value the cross-section is small.

Minimal Linear Seesaw Model

First proposed in the context of $SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

and in the context of SO(10) framework. Akhmedov et al, hep-ph/9507275, Malinsky et al, hep-ph/0506296

Here, the simplest version is realized within the SM gauge group itself: P.B. et al, 2305.00994, 2304.06080

Add pair of singlets with $L[v^c]=-1, L[S]=1$ and a scalar doublet $L[\chi_L] = -2$:

$$
-\mathcal{L}_{\text{Yuk}} = Y_{\nu}^{\alpha} L_{\alpha}^{T} C \nu^{c} \Phi + M_{R} \nu^{c} C S + Y_{S}^{\alpha} L_{\alpha}^{T} C S \chi_{L} + \text{h.c.}
$$

$$
\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m_D & M_L \\ m_D^T & 0 & M_R^T \\ M_L^T & M_R^T & 0 \end{pmatrix} \quad \text{with} \quad m_D = \frac{Y_{\nu} v_{\phi}}{\sqrt{2}} \quad \text{and} \quad M_L = \frac{Y_{\text{S}} v_{\chi}}{\sqrt{2}}
$$

Light neutrino masses in the limit $M_R \gg m_D \gg M_L$: $m_\nu = \frac{\mathbf{m}_D \mathbf{M}_L^T + \mathbf{M}_L \mathbf{m}_D^T}{M_P}.$

In contrast to type-I seesaw, m_v scales linearly with m_D : hence the name linear!

Neutrino mass diagonalization: $\mathcal{U}^{\dagger} \mathcal{M}_{\nu} \mathcal{U}^* = \mathcal{M}_{\nu}^{\text{diag}}$

$$
\mathcal{U} \approx \begin{pmatrix} U & -\frac{i}{\sqrt{2}}\mathbf{S} & \frac{1}{\sqrt{2}}\mathbf{S} \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\mathbf{S}^{\dagger} & -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}
$$

where $\mathbf{S} = \mathbf{m}_D/M_R$

Hence, mixing can be large.

Masses of heavy-neutrinos are

$$
M_{N_{4,5}} = M_R \left(1 + \frac{1}{2} |\mathbf{S}|^2 \right) \mp \frac{1}{2 M_R} \left(\mathbf{M}_L^\dagger \mathbf{m}_D + \mathbf{m}_D^\dagger \mathbf{M}_L \right)
$$

The mass matrix m_v has two nonzero eigenvalues

$$
m_{\nu}^{i} = |\mathbf{M}_{L}||\mathbf{S}| \mp |\mathbf{M}_{L}^{*}\mathbf{S}|, \begin{cases} i = 2, 3 \text{ for } \mathbf{NO} \\ i = 1, 2 \text{ for } \mathbf{IO} \end{cases}
$$

Heavy neutrino mass splitting can be written in terms of the measured mass square differences of light neutrinos:

$$
\Delta M^{\mathbf{NO}} = \Delta m_{32}, \quad \Delta M^{\mathbf{IO}} = \Delta m_{21}.
$$

Heavy neutrino production channels

ILC: 1506.07830, CLIC: 1812.06018, CEPC: 1811.10545

From the decay of charged Higgs

 $m_{H^{\pm}}$, $m_{H/A} > M_{N_i}$

Heavy neutrino-antineutrino ($N-\overline{N}$) oscillation

• N is produced together with an anti-lepton and \overline{N} is produced together with a lepton.

S.Antusch. et al, 2012.05763

Oscillations occur due to interference between the mass eigenstates $N_{4,5}$ during propagation.

Heavy neutrino-antineutrino ($N-\overline{N}$) oscillation

• The oscillation probabilities in the lab frame $L_N = L_N^0 \sqrt{\gamma^2 - 1}$ $P_{\rm osc}^{N\to N(\bar{N})}(x_1,x_2)=\frac{1}{L_N}\int_{x_1}^{x_2}\bar{P}_{\rm osc}^{N\to N(\bar{N})}(x)dx.$ $L_{\rm osc} = L_{\rm osc}^0 \sqrt{\gamma^2 - 1}$ $L_{\rm osc}^0 = c\tau_{\rm osc}$ $\bar{P}_{\rm osc}^{N \to N(\bar{N})}(x) = \frac{1}{2} e^{-x/L_N} (1 \pm \cos(2\pi x/L_{\rm osc}))$ $\tau_{osc} = 2\pi/\Delta M$ 1.0 $M_N = 10$ GeV, $\Delta M / \Gamma_N = 10$ 0.8 $L_{osc}=0.25$ m, $L_N=0.4$ m 0.6 $-\overline{P}_{osc}^{N\rightarrow \bar{N}}$ \overline{a} ^{0.4} \bigwedge \bigvee \bigwedge \bigwedge **Oscillation length in the laboratory** ^{0.2} $\left\{\begin{array}{ccc} \setminus \\ \setminus \end{array}\right\}$ $\left\{\begin{array}{ccc} \setminus \\ \setminus \end{array}\right\}$ is large enough to be experimentally $\begin{array}{ccc}\n0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\end{array}$ resolvable. *M*=10*GeV M*=50*GeV* $x[m]$ $L_{\rm osc}^0$ [m] ΔM [eV] $L_{\rm osc}$ [m] ($\gamma = 150$) $L_{\rm osc}$ [m] ($\gamma = 30$) $\textbf{NO} |41.51 \times 10^{-3} |2.98 \times 10^{-5}$ 4.5×10^{-3} 8.9×10^{-4} **IO** $|749.8 \times 10^{-6}|1.65 \times 10^{-3}|$ 247×10^{-3} 49.5×10^{-3}

LNV at colliders

Expected number of LNC and LNV events

 $N^{\text{LNC}}(x_1, x_2, \sqrt{s}, \mathcal{L}) = \mathcal{L} \sigma \text{BR} \left[\left(P_{\text{osc}}^{N \to N}(x_1, x_2) \right)^2 + \left(P_{\text{osc}}^{N \to \overline{N}}(x_1, x_2) \right)^2 \right]$ $N^{\text{LNV}}(x_1, x_2, \sqrt{s}, \mathcal{L}) = 2\mathcal{L} \sigma \, BR \, P_{\text{osc}}^{N \to N}(x_1, x_2) P_{\text{osc}}^{N \to \overline{N}}(x_1, x_2),$

LNV at colliders

The ratio between LNC and LNV events (for an ideal detector)

Above a certain \boldsymbol{M}_N , $R_{\ell\ell}$ drops to zero as $\frac{\Delta M}{\Gamma_N}$ becomes small

Ideal Detector

FCC-ee

Conclusion

- Lepton number violating same-sign dilepton events are rare in SM, making them a distinctive signature for new physics.
- In contrast to other low-scale seesaw schemes, in linear seesaw mechanism, LNV can be large at high energies.
- The Yukawa coupling Y_s detemines the heavy-neutrino production instead of the small light-heavy neutrino mixing.
- Heavy neutrino-antineutrino oscillations are necessary for the LNV signal.
- A relatively large number of LNV events are expected at colliders.

RHN decay modes

 $CC: N_i \to \ell W^*$ $NC: N_i \to \nu_{\ell} Z^*$ Yukawa: $N_i \to \nu_{\ell} h^*$

Small M_N and small $V_{\ell N}$ implies small decay width:

Long-lived RHN Displaced vetrex

S. Antusch, O. Fischer, JHEP 12 (2016) 007 C.W. Chiang et al, 1908.09893