Magnetic field amplification and decay in cosmic string wakes

Deepanshu Bisht Indian Institute of Technology Kanpur

October 15, 2024

International Conference on Interconnections between Particle Physics and Cosmology

References

- 1. D.B., D. Kumar, S. Nayak, S. Sanyal, Magnetic field amplification and decay in cosmic string wakes [\[arXiv:2408.01778](https://arxiv.org/abs/2408.01778v2)]
- 2. S. Nayak, S. Sau, S. Sanyal, Evolution of magnetic fields in cosmic string wakes, *Astroparticle Physics*, Volume 146, 2023, 102805 [\[arXiv:2204.13303v2](https://arxiv.org/abs/2204.13303v2)]
- 3. D. Kumar and S. Sanyal, Magnetic Reconnection in the Wakes of Cosmic Strings *Astrophysical Journal* 944 183 (2023) [[arXiv:2210.17164v1](https://arxiv.org/abs/2210.17164v1)]
- 4. S. Sau and S. Sanyal, Neutrino currents in wakes of cosmic strings. *Eur. Phys. J. C* 80, 152 (2020)[[arXiv:1906.09733v2\]](https://arxiv.org/abs/1906.09733)

Introduction

Cosmic String as a 1D topological defect

- Toy example: $\mathcal{L} = |\partial_{\mu} \Phi|^2 \frac{\lambda}{2}$ $\frac{\lambda}{2}(|\Phi|^2 - \eta^2)^2$ after global *U*(1) symmetry breaking
- VEV: $\langle \Phi \rangle = \eta e^{i\alpha}$ (new stable minima)
- Which stable vacua (α) is picked depends on fluctuations *⇒* domain formation
- $\Delta \alpha = 2\pi n$ over spatial loop. Shrinking loop continuously can't make it zero
- Discontinuity is encountered. Trapped old vacua: cosmic string solution

Figure 1: Going over a loop in physical space [Cosmic strings 1506.04039]

Figure 2: Domains of different vacua [CTC Cambridge]

Motivation

Cosmological importance of topological defects and cosmic strings

- Topological defects: directly connected to very early universe
- Likely in several phase transition scenarios
- In particular, cosmic strings have trapped energy density; don't contradict basic cosmological observations

Cosmic string characteristics:

- Abelian strings have finite mass per unit length: *^G^µ [∼]* ¹⁰*−*⁶
- Signatures like gravitational waves, lensing, synchrotron radiation etc.
- role in large-scale structure formation, primordial magnetic field origin, evolution

Cosmic string wakes play a critical role

Cosmic String Wake formation

Sheet-like structures behind cosmic strings

- Cosmic string metric is locally flat but **globally conical** (deficit angle $\theta = 8\pi G\mu$)
- Gives background matter/plasma a **kinematic boost** $\Delta v = 4\pi G \mu v_s \gamma_v$

Figure 3: Globally conical, locally flat metric [*"Cosmic Strings and Large Scale Structures"*, CTC Cambridge]

Figure 4: Overdense wake structure in string's rest frame [*Cosmic Strings and Other Topological Defects*, A. Vilenkin]

Magnetized Wakes

Wakes with magnetic field in the plasma

- Magnetic fields can be generated in cosmic string wakes
- The background plasma and magnetic field interact and evolve with the wake
- Possibility of magnetic reconnections *⇒* new signatures

[S. Sau and S. Sanyal, Eur. Phys. J. C. 80(2), February 2020] [D. Kumar and S. Sanyal, [ApJ 944\(2\):183, feb 2023.](https://iopscience.iop.org/article/10.3847/1538-4357/acb4ef)]

These motivate us to explore

- Magnetohydrodynamic simulations of wakes in magnetized plasma
- Identifying the core features of the field evolution
- Characteristic scales, relevance to magnetic reconnections?

Ideal Magnetohydrodynamics (MHD)

Framework for numerical simulation

Large-scale matter flow around string is collisional; astrophysical/early universe plasma is highly conductive **and intervention and intervention and intervention and intervention and intervention and i**

• So, we use Ideal MHD: inviscid and infinitely conductive fluid

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \quad \frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}),
$$
\n
$$
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla \left(P + \frac{B^2}{8\pi} \right) + \frac{(\mathbf{B} \cdot \nabla) \mathbf{B}}{4\pi}.
$$
\n(1)

- Plus an equation of state (polytropic: $P = K\rho^{\gamma}$, $\gamma = 5/3$)
- Vorticity $\omega = \nabla \times \mathbf{v}$ depends on velocity and magnetic fields

Numerical Simulation

Package and Initial setup

- Software package: OpenMHD, a finite-volume Fortran code for MHD
- Simulations confined to **2D discretized** *xy* **plane**; Stepsize/lengthscale ∆*l* = 1 unit.
- Open boundary conditions. Turbulence not generated due to boundary conditions or by vorticity at different lengthscales

Scales Typical/initial values of field variables: ρ_0 *, B*₀*, v*₀*, P*₀ Sound speed $c_s^2 = \gamma P_0/\rho_0$

Parameters

 $plasma-\beta = 2P/B^2$, Mach number $\mathcal{M} = v_0/c_s$, Cosmic string deficit angle 2*θ*

Simulating the Wake

- Simulation happens in **string's rest frame**.
- To the string's right plasma has constant flow $\mathbf{v} = -v_0\hat{x}$
- To the string's left, **perturbation** is given such that total velocity is unchanged
- If wake angle $= 2\theta$, we have
	- $v'_y = \delta v_y = v_0 \sin \theta, v'_x = v_0 \cos \theta$
- This velocity discontinuity implies **local vorticity**

Figure 5: Wake simulation geometry and setup

[P. P. Avelino and E. P. S. Shellard, [Phys. Rev. D, 51:5946–5949, May 1995.](https://doi.org/10.1103/PhysRevD.51.5946)]

Hydrodynamic wake simulation

Visualizing hydrodynamic wake using streamlines

Figure 6: String at $(x_0, 0)$. Vortices are formed due to evolution of the initial velocity perturbations and vorticity flow. No magnetic field is taken. Total vorticity is conserved. $\mathcal{M} = 10$, $\theta = 15^\circ$

Wakes with magnetic field

- MHD wake simulations with magnetic field turned on in *xy* plane
- Magnitude fixed by *β*, taken 10. Higher *β*s give similar results. Flow dynamics **not dominated by magnetic field**
- Total vorticity is conserved.
- Non-uniform, sheared fields; more likely to occur in wakes
- Different field configurations spatially varying over a **range of lengthscales** are used for simulations

(As fields in wake can be generated at varied lengthscales)

Amplification of *B* **field**

Sheared perturbation along the flow

50000

Total field energy evolution

*^l*⁰ *∼* 1/*α*¹

Figure 8: Total magnetic field energy increasing with time

Figure 9: Peak value of magnetic field increasing with time

Magnetic field amplifies for all α_1 and geometries sheared along the flow. Results shown for $\alpha_1 = 0.01$

Reasons for amplification

- **Alfven's theorem**, valid in ideal MHD: *Magnetic field lines are frozen in the fluid*
- So, fluid overdensity and deformation in the wake causes *B* field amplification
- Skew deformations of fluid affect both *B* field direction and strength
- Analysis by deformation tensor of fluid shows magnetic field increases with density

 $B \propto \rho^a$

• So final field strength is more than initial field strength in the wake

[Emma J. King and Peter Coles, [MNRAS 365\(4\):1288–1294, February 2006.](https://doi.org/10.1111/j.1365-2966.2005.09811.x)]

Amplification with perpendicular shear

Sheared magnetic perturbation perpendicular to the flow

 $\text{Figure 10: } \mathbf{B} = B_0 \hat{v} e^{-\alpha_2 |x - x_s|}$ perpendicular sheared field with lengthscale $l_0 \sim 1/\alpha_2$

Figure 11: Total magnetic field energy increasing with time

Figure 12: Peak value of magnetic field increasing with time

Amplification for $\alpha_2 \leq 1$ (large lengthscales). Results shown for $\alpha_2 = 0.01$.

Decay with perpendicular shear

Sheared magnetic perturbation perpendicular to the flow

Figure 14: Total magnetic field energy decreasing with time

Figure 15: Peak value of magnetic field decreasing with time

Decay of magnetic field for $\alpha_2 \gtrsim 1$ (smaller lengthscale). Results shown for $\alpha_2 = 1$.

Reasons for decay

Breakdown of Alfven's theorem

- Alfven theorem implies magnetic field lines flow with the velocity of the fluid
- At individual charged particle level: guiding center approximation is used
- Valid as long as the gradient drift is small

$$
v_g \propto \frac{r_g}{l_0} \Rightarrow r_g \ll l_0 \ , \quad \left(r_g = \frac{mcv}{qB} \ , \quad l_0 : B\text{-field lengthscale}\right) \tag{2}
$$

- Guiding center approx. breaks down when *r^g ∼ l*0. Magnetic field lines don't flow with the plasma.
- In the simulation this is verified by the values of r_g and l_0
- Magnetic reconnection requires similar breakdown of Alfven's theorem

[Gregory L. Eyink, Hussein Aluie, [Physica D, Volume 223, Issue 1, 2006](https://doi.org/10.1016/j.physd.2006.08.009)] [Bhimsen K. Shivamoggi, [Physics Reports, Volume 127, Issue 2, 1985](https://doi.org/10.1016/0370-1573(85)90056-0)]

Summary

- Amplification and decay of magnetic fields in cosmic string wakes is studied in absence of dynamo mechanism
- Found strong dependence on magnetic field geometry and lengthscales in the field's evolution.
- Decay of magnetic field occurs for lengthscales below gyroradius *r^g* associated with the field and plasma particle
- Alfven's theorem breakdown near r_g suggests a scale for magnetic reconnections
- Resistive MHD, 3*D* simulations etc. are possible future directions

Acknowledgements

I would like to acknowledge

- The National Science Academy's Summer Research Fellowship for supporting my summer internship at Hyderabad University.
- Funding from the DST-SERB Power Grant No. SPG/2021/002228 of the Government of India.
- Funding from the Dept. of Physics, IIT Kanpur

Thank You!