Probing flavor violation and baryogenesis via primordial gravitational waves

Based on JHEP 07 (2024) 228

🗧 With Prof. Seyda Ipek, Dr. Anish Ghoshal

Oct 16, 2024

Zafri Ahmed Borboruah

Department of Physics Indian Institute of Technology Bombay

PPC 2024

University of Hyderabad Indian Institute of Technology Hyderabad

Limitations of the Standard Model

The Gravitational Wave Spectrum

Sources of early gravitational waves

NANOGrav "New Physics" ApJL 2023

Sources of early gravitational waves

NANOGrav "New Physics" ApJL 2023

Thermal History of the Universe with Inflationary Gravitational Waves

History of the Universe

Credit: NASA.

Horizon re-entry of different scales after inflation

Credit: CERN.

Horizon re-entry of different scales after inflation

Credit: CERN.

Scales (k⁻¹)

S. Dutta et. al., JHEP (2022).

$$\Omega_{GW}(k) = \frac{1}{12} \left(\frac{k}{a_0 H_0}\right)^2 T_T^2(k) P_T^{\text{prim.}}(k)$$

$$T_{\rm in} = 5.8 \times 10^6 \,{\rm GeV} \left(\frac{106.75}{g_*(T_{\rm in})}\right)^{1/6} \left(\frac{k}{10^4 \,{\rm Mpc}^{-1}}\right)$$

$$\Gamma_T^2(k) = \Omega_m^2 \left(\frac{g_*(T_{\rm in})}{g_*^0}\right) \left(\frac{g_{*S}^0}{g_{*S}(T_{\rm in})}\right)^{4/3} \left(\frac{3j_1(z_k)}{z_k}\right)^2 F(k)$$

$$P_T^{\text{prim.}}(k) = A_T(k_*) \left(\frac{k}{k_*}\right)^{n_T}$$

 $A_T(k_*) = 2.0989 \times 10^{-9} r^{-1}$

Kuroyanagi et al JCAP 2014

Berbig et al JHEP 2023

$$T(k)_{\text{standard}} = T_1^2 \left(\frac{k}{k_{\text{eq.}}}\right) T_2^2 \left(\frac{k}{k_{\text{RH}}}\right)$$

$$F(k)_{\rm IMD} = T_1^2 \left(\frac{k}{k_{\rm eq.}}\right) T_2^2 \left(\frac{k}{k_{\rm dec.}}\right) T_3^2 \left(\frac{k}{k_{\rm dec. S}}\right) T_2^2 \left(\frac{k}{k_{\rm RH S}}\right)$$

GW spectra from inflation

Kuroyanagi et al JCAP 2014

Berbig et al JHEP 2023

$$k_{\rm eq.} = 7.1 \times 10^{-2} \,\mathrm{Mpc}^{-1} \cdot \Omega_m h^2$$

$$k_{\rm dec.} = 1.7 \times 10^{14} \,\mathrm{Mpc}^{-1} \left(\frac{g_{*S}(T_{\rm dec.})}{g_{*S}^0}\right)^{1/6} \left(\frac{T_{\rm dec.}}{10^7 \,\mathrm{GeV}}\right)$$

$$k_{\rm RH} = 1.7 \times 10^{14} \,\mathrm{Mpc}^{-1} \left(\frac{g_{*S}(T_{\rm RH})}{g_{*S}^0}\right)^{1/6} \left(\frac{T_{\rm RH}}{10^7 \,\mathrm{GeV}}\right)$$

$$dec. \ S = k_{\rm dec.} \Delta^{2/3}$$

$$T_1^2(x) = 1 + 1.57x + 3.42x^2$$
$$T_2^2(x) = \left(1 - 0.22x^{3/2} + 0.65x^2\right)^{-1}$$
$$T_3^2(x) = 1 + 0.59x + 0.65x^2$$

 $k_{\rm RH \ S} = k_{\rm RH} \Delta^{-1/3}$

 $\overline{U(1)}_{\mathrm{FN}}$

 $U(1)_{\rm FN}$ Flavon S -1Fermion ψ_i Q_i

Z

 $U(1)_{\rm FN}$ Flavon S -1Fermion ψ_i Q_i

Effective operator:

$$u_{ij}\psi_i\psi_j H\left(rac{v_S+S}{\Lambda_{\rm FV}}
ight)^{n_{ij}} \qquad \begin{array}{l} n_{ij} = Q_i + Q_j \\ y_{ij} \sim \mathcal{O}(1) \end{array}$$

 $U(1)_{\rm FN}$ Flavon S -1Fermion ψ_i Q_i

Effective operator:

$$_{ij}\psi_i\psi_jH\left(rac{v_S+S}{\Lambda_{\rm FV}}
ight)^{n_{ij}}$$
 $n_{ij}=Q_i+Q_j$
 $y_{ij}\sim \mathcal{O}(1)$

$$\epsilon = \frac{v_S}{\Lambda_{\rm FV}} \qquad Y_{ij} = \begin{pmatrix} \epsilon^{n_{11}} & \epsilon^{n_{12}} & \epsilon^{n_{13}} \\ \epsilon^{n_{21}} & \epsilon^{n_{22}} & \epsilon^{n_{23}} \\ \epsilon^{n_{31}} & \epsilon^{n_{32}} & \epsilon^{n_{33}} \end{pmatrix}$$

 \mathcal{Y}

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.}$$

$$S \rightarrow \overline{\ell}_L + e_D + \phi \quad S^* \rightarrow \overline{e}_D + \ell_L + \phi^*$$

Chen et al PRD 2019

 \boldsymbol{n} \mathbf{n}

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.}$$

Chen et al PRD 2019

 $S \to \ell_L + e_R + \phi, \quad S^* \to \bar{e}_R + \ell_L + \phi^*$

 Δ_{l_L} asymmetry is balanced by Δ_{e_R} asymmetry (no LNV)

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.} \qquad \square$$

Chen et al PRD 2019

$$S \to \overline{\ell}_L + e_R + \phi, \quad S^* \to \overline{e}_R + \ell_L + \phi^*$$

 Δ_{l_L} asymmetry is balanced by Δ_{e_R} asymmetry (no LNV)

$$\Gamma_{LR} \simeq 10^{-2} y_e^2 T \qquad \qquad y_e \simeq 2.9 \times 10^{-6}$$

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.}$$

Chen et al PRD 2019

$$S \to \overline{\ell}_L + e_R + \phi, \quad S^* \to \overline{e}_R + \ell_L + \phi^*$$

 Δ_{l_L} asymmetry is balanced by Δ_{e_R} asymmetry (no LNV)

 $\Gamma_{LR} \simeq 10^{-2} y_e^2 T$ $y_e \simeq 2.9 \times 10^{-6}$

RD: Right-handed electrons come into equilibrium at $T \sim 10^5 \text{ GeV}$

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.}$$

Chen et al PRD 2019

 Δ_{l_L} asymmetry is balanced by Δ_{e_R} asymmetry (no LNV)

 $\Gamma_{LR} \simeq 10^{-2} y_e^2 T \qquad \qquad y_e \simeq 2.9 \times 10^{-6}$

RD: Right-handed electrons come into equilibrium at $T \sim 10^5$ GeV IFD: Right-handed electrons does not equilibriate till $T \sim 100$ GeV

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.}$$

Chen et al PRD 2019

 Δ_{l_L} asymmetry is balanced by Δ_{e_R} asymmetry (no LNV)

 $y_e \simeq 2.9 \times 10^{-6}$ $\Gamma_{LR} \simeq 10^{-2} y_e^2 T$

RD: Right-handed electrons come into equilibrium at $T \sim 10^5 \text{ GeV}$ IFD: Right-handed electrons does not equilibriate till $T \sim 100 \text{ GeV}$ Sphalerons act only on the left-handed asymmetry at $T \sim 160 \text{ GeV}$

$$\mathcal{L} \supset \left(\frac{v_S + S}{\Lambda_{\rm FV}}\right)^{n_i} \overline{e}_R^i \phi^* \ell_L^i + \text{h.c.}$$

Chen et al PRD 2019

$$S \to \ell_L + e_R + \phi, \quad S^* \to \bar{e}_R + \ell_L + \phi^*$$

We are agnostic of the exact model that creates the initial flavon asymmetry. We simply assume that far below Λ_{FV} , the flavon potential preserves an approximate $U(1)_S$ symmetry that is broken explicitly by small S-number violating terms responsible for the initial asymmetry,

$$V_S = m^2 |S|^2 + \begin{pmatrix} S\text{-number violating terms} \\ \text{suppressed by } \Lambda_{\rm FV} \end{pmatrix}$$

Boltzmann equations:

$$\frac{d\rho_S}{dt} + 3H\rho_S = -\Gamma_S \rho_S , \qquad \Gamma_S \simeq 2.3 \times 10^{-17} \,\text{GeV} \left(\frac{m_S}{\text{TeV}}\right)^3 \left(\frac{10^{10} \,\text{GeV}}{\Lambda_{\text{FV}}}\right)^2 ,$$

$$\frac{d\rho_R}{dt} + 4H\rho_R = \Gamma_S \rho_S , \qquad H^2 = \frac{8\pi}{3M_{\text{Pl}}^2} (\rho_S + \rho_R) ,$$

$$\frac{d\Delta_{e_R}}{dt} = -3H\Delta_{e_R} - \Gamma_{LR}\Delta_{e_R} + B_e \Gamma_S \Delta_S \qquad \Delta_S = \eta_S \frac{\rho_S}{m_S}$$

$$\eta \equiv \frac{n_B - n_{\bar{B}}}{s} \simeq \frac{198}{481} \frac{\Delta_{e_R} (T = T_{\text{EW}})}{s} \qquad \eta_{\text{obs}} = \frac{n_B - n_{\bar{B}}}{s} \simeq 8 \times 10^{-11}$$

$$T_{\rm dec} \simeq 1.8 \ {\rm GeV} \sqrt{\frac{\Gamma_S}{10^{-17} \ {\rm GeV}}} \simeq 2.7 \ {\rm GeV} \left(\frac{m_S}{{
m TeV}}\right)^{3/2} \left(\frac{10^{10} {
m GeV}}{\Lambda_{\rm FV}}\right)$$

$$D = \frac{s(T_{\text{after}})a^3(T_{\text{after}})}{s(T_{\text{before}})a^3(T_{\text{before}})} = \left(1 + 2.95 \left(\frac{2\pi^2 \langle g_*(T) \rangle}{45}\right)^{1/3} \frac{\left(\frac{\rho_S}{s}|_{\text{initial}}\right)^{4/3}}{(M_{\text{Pl}}\Gamma_S)^{2/3}}\right)^{3/4}$$
$$\simeq 2 \times 10^6 \left(\frac{T_*}{10^6 \text{ GeV}}\right) \left(\frac{\Lambda_{\text{FV}}}{10^{10} \text{ GeV}}\right) \left(\frac{\text{TeV}}{m_S}\right)^{3/2},$$

$$\Omega_{\rm exp}(f)h^2 = \frac{2\pi^2 f^2}{3H_0^2} h_{\rm GW}(f)^2 h^2$$

$$SNR \equiv \sqrt{\tau \int_{f_{\min}}^{f_{\max}} \mathrm{d}f \left(\frac{\Omega_{\mathrm{GW}}(f)h^2}{\Omega_{\mathrm{exp}}(f)h^2}\right)^2}$$

Conclusions

- ✓ We explore the connection between flavor violation, baryogenesis, and gravitational waves, focusing on how the dynamics of the flavon field, which explains the fermion mass hierarchy in the SM, could produce a detectable baryon asymmetry and imprint unique spectral features in primordial GWs.
- ✓ We analyze the suppression of primordial gravitational wave spectra due to flavon domination and decay, identifying model parameters for which both baryon asymmetry and GW signals are detectable by future GW detectors like U-DECIGO, BBO, LISA, ET and µ-ARES.
- ✓ As GW detector technology advances, the precision achieved could enable the highenergy physics and gravitational wave communities to test BSM mechanisms related to flavor physics, matter-antimatter asymmetry, and inflationary cosmology in unprecedented detail.

Conclusions

- ✓ We explore the connection between flavor violation, baryogenesis, and gravitational waves, focusing on how the dynamics of the flavon field, which explains the fermion mass hierarchy in the SM, could produce a detectable baryon asymmetry and imprint unique spectral features in primordial GWs.
- ✓ We analyze the suppression of primordial gravitational wave spectra due to flavon domination and decay, identifying model parameters for which both baryon asymmetry and GW signals are detectable by future GW detectors like U-DECIGO, BBO, LISA, ET and µ-ARES.
- ✓ As GW detector technology advances, the precision achieved could enable the highenergy physics and gravitational wave communities to test BSM mechanisms related to flavor physics, matter-antimatter asymmetry, and inflationary cosmology in unprecedented detail.

