Study of exclusive decays of $B_s \rightarrow \psi(1S,2S)K_s$ and $B_s \rightarrow \eta_c(1S,2S)K_s$ in the framework of Relativistic Independent Quark Model

(Based on- arXiv:2404.14267v2 [hep-ph]) (Accepted by Phys. Rev. D)

17TH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY PPC 2024

14 -18 October 2024, Hyderabad, India

LOPAMUDRA NAYAK

Real an farrage

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैवराबाद Indian Institute of Technology Hyderabad

Outline

- ★ Introduction
- \star Motivation
- ★ Relativistic Independent Quark model (RIQ) model
- ★ $B_s \rightarrow \psi(1S,2S)K_s$ and $B_s \rightarrow \eta_c(1S,2S)K_s$
- \bigstar Numerical Analysis
- ★ Summary

Introduction

- Heavy \sim (5-6) GeV
- Long lifetime ~1.5 ps.
- B mesons decay via weak interactions
- Involve in flavor changing processes
- CP violating effects

Motivation

- B_s meson is involved in rare decay processes.
- The B_s mesons show the effect of mixing.
- This oscillation from matter to antimatter can be used to measure fundamental parameters of the Standard Model.
- In addition, it is closely related to CP violation and might have far reaching effects, such as the matter-antimatter asymmetry observed in the universe.
- $B_s \rightarrow J/\psi K_s$ is used as the control channel to handle phase shift $\Delta \phi_d$.
- The decay $B_d \rightarrow J/\psi K_s$ is considered as the "golden mode" for measuring the CKM angle sin 2β .
- The decay $B_s \rightarrow J/\psi K_s$ is related to $B_d \rightarrow J/\psi K_s$ through the U-spin symmetry of strong interaction.

Literature

Literature

Observation of
$$B^0_s o J/\psi K^{st 0}(892)$$
 and $B^0_s o J/\psi K^0_S$ Decays

CDF Collaboration • T. Aaltonen (Helsinki Inst. of Phys.) Show All(514)

Measurement of the $B^0_s o J/\psi K^0_S$ branching fraction

LHCb Collaboration • R Aaij (NIKHEF, Amsterdam) Show All(596)

Measurement of the time-dependent CP asymmetries in $B^0_s o J/\psi K^0_{
m S}$

LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) Show All(703)

Measurement of the effective $B^0_s ightarrow J/\psi K^0_S$ lifetime

LHCb Collaboration • R Aaij (NIKHEF, Amsterdam) Show All(632)

Apr 16, 2013

ur. Phys. J. C (2022) 82:499 https://doi.org/10.1140/epjc/s10052-022-10315-y The European Physical Journal C

Regular Article - Experimental Physics

Observation of
$$B^0 \rightarrow \psi(2S)K_S^0\pi^+\pi^-$$
 and $B_s^0 \rightarrow \psi(2S)K_S^0$ decays

CMS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Relativistic Independent Quark(RIQ) Model

- In this model a hadron is considered as a colour singlet core of relativistic independent quark and antiquark, surrounded by cloud of pions.
- **D** The quark constituents in this model are believed to interact with the potential in the form :

$$U(r) = \frac{1}{2}(1 + \Upsilon_0)(ar^2 + V_0)$$

The potential represents phenomenologically the confining interaction expected in QCD to be generated by non-perturbative multigluon mechanism.

We incorporate this interaction potential in the lagrangian density to obtain in the form : $\mathbf{\hat{t}} = \overline{\psi_q} \left[\frac{1}{2} \mathbf{i} \Upsilon^{\mu} \partial_{\mu} - U(r) - m_q \right] \psi_q(\mathbf{r})$

The Dirac Equation:

$$(\alpha . p + \beta m_q + U(r))\psi_q(r) = E \psi_q(r)$$

where, $\alpha = \frac{\gamma_i}{\gamma_0}$ and $\beta = \gamma_0$

Solving the Dirac equations we get positive and negative energy solutions known as quark and antiquark orbitals respectively in the general form:

$$\psi_{nlj}^{+}(\vec{r}) = \begin{pmatrix} \frac{ig_{nlj}(r)}{r} \\ (\vec{\sigma}.\hat{r}) \frac{f_{nlj}(r)}{r} \end{pmatrix} \varphi_{ljm_j}(\hat{r}) \qquad \psi_{nlj}^{-}(\vec{r}) = \begin{pmatrix} i\vec{\sigma}.\frac{\hat{r}f_{nj}(r)}{r} \\ g_{nlj}(r)/r \end{pmatrix} (-1)^{j+m_j-l} \varphi_{ljm_j}(\hat{r})$$

Where,

$$g_{nlj}(r) = N_{q} \left(\frac{r}{r_{nl}}\right)^{l+1} e^{-r^{2}/2r_{nl}^{2}} L_{n-1}^{l+1/2} \left(\frac{r^{2}}{r_{nl}^{2}}\right)$$

and $f_{nlj}(r) = -N_{q} \frac{1}{r_{nl}\lambda_{nl}} \left(\frac{r}{r_{nl}}\right)^{l+2} e^{-r^{2}/2r_{nl}^{2}} \left[L_{n-2}^{l+3/2} \left(\frac{r^{2}}{r_{nl}^{2}}\right) + L_{n-1}^{l+3/2} \left(\frac{r^{2}}{r_{nl}^{2}}\right)\right]$

• For n=1 and l=0 (ground state)

•
$$G_s(\overrightarrow{p_s}) = \frac{i\pi N_s}{2\alpha_s \lambda_s} \sqrt{\frac{(\overline{E_{p_s} + m_s})}{E_{p_s}}} (E_{p_s} + E_s) exp\left(-\frac{\overrightarrow{p_s}^2}{4\alpha_s}\right)$$

•
$$\tilde{G}_b(\overrightarrow{p_b}) = \frac{i\pi N_b}{2\alpha_b\lambda_b} \sqrt{\frac{(E_{p_b} + m_b)}{E_{p_b}}} (E_{p_b} + E_b) exp\left(-\frac{\overrightarrow{p_b}^2}{4\alpha_b}\right)$$

Using the momentum probability amplitudes for quarks and antiquarks we construct the momentum profile function for the meson state as:

$$\mathcal{G}_{\boldsymbol{B}_s}(\vec{p}_b,\vec{p}_s)=\sqrt{\tilde{G}_b(\vec{p}_b)G_s(\vec{p}_s)}$$

MESON STATE AND MESON NORMALIZATION

The meson state at definite momentum \vec{P} and spin projection S_{B_s} is taken as: $|B_s(\vec{P}, S_{B_s})\rangle = \hat{\Lambda}_{B_s}(\vec{P}, S_{B_s}) |(\vec{p_b}, \lambda_b); (\vec{p_s}, \lambda_s)\rangle$ where $|(\vec{p_b}, \lambda_b); (\vec{p_s}, \lambda_s)\rangle = \tilde{b_b}^{\dagger}(\vec{p_b}, \lambda_b)\hat{b}_s^{\dagger}(\vec{p_s}, \lambda_s) |0\rangle$

$$\widehat{\Lambda}_{B_s}(\overrightarrow{P}, \mathbf{S}_{B_s}) = \frac{\sqrt{3}}{\sqrt{N_{B_s}(\overrightarrow{P})}} \sum_{\delta_b, \delta_s} \zeta_{b,s}^{B_s} (\lambda_b, \lambda_s) \int d^3 \overrightarrow{p_b} d^3 \overrightarrow{p_s} \delta^{(3)} (\overrightarrow{p_b} + \overrightarrow{p_s} - \overrightarrow{P}) \mathcal{G}_{B_s}(\overrightarrow{p_b}, \overrightarrow{p_s})$$

Imposing Normalisation condition

$$\left\langle B_s\left(\vec{P'}\right) \middle| B_s\left(\vec{P}\right) \right\rangle = \delta^3\left(\vec{P} - \vec{P'}\right)$$

Where $N(\vec{P}) = \int d\vec{p}_b |G(\vec{p}_b, \vec{P} - \vec{p}_b)|^2$

FEYNMAN DIAGRAM

$B_{s} \rightarrow \psi(1S,2S)K_{s}$ and $B_{s} \rightarrow \eta_{c}(1S,2S)K_{s}$

The nonvanishing part of the matrix elements of the current J^{μ} between the vacuum and final meson states in covariant form are parameterized by meson decay constants $f_{P,V}$

$$\begin{split} \langle P | \bar{q}'_{i} \gamma^{\mu} \gamma_{5} q_{j} | 0 \rangle &= i f_{P} p_{P}^{\mu} \\ \langle V | \bar{q}'_{i} \gamma^{\mu} q_{j} | 0 \rangle &= e^{*\mu} f_{V} m_{V} \end{split} \qquad \begin{aligned} \langle P(p_{P}) | \bar{q}_{c} \gamma_{\mu} q_{b} | B_{s}(p) \rangle \\ &= \left[(p + p_{P})_{\mu} - \frac{M^{2} - m_{P}^{2}}{q^{2}} q_{\mu} \right] F_{1}(q^{2}) + \frac{M^{2} - m_{P}^{2}}{q^{2}} q_{\mu} F_{0}(q^{2}) \\ &= (p + p_{P})_{\mu} f_{+}(q^{2}) + (p - p_{P})_{\mu} f_{-}(q^{2}), \end{aligned}$$

$$f_{\pm}(q^2) = \frac{1}{2} \int d\vec{p}_b C(\vec{p}_b) \left\{ \left[E_b(\vec{p}_b) + m_b \right] \left[E_d(\vec{p}_b + \vec{k}) + m_d \right] + \vec{p}_b^2 \pm \left[E_b(\vec{p}_b) + m_b \right] \left[M \mp E_{P_1} \right] \right\}$$

$$C(\vec{p}_b) = \frac{\mathcal{G}_{B_s}(\vec{p}_b, -\vec{p}_b)\mathcal{G}_{K_s}(\vec{p}_b + \vec{k}, -\vec{p}_b)}{\sqrt{N_{B_s}(0)N_{K_s}(\vec{k})}}$$

$$\sqrt{\frac{\left[E_{b}(\vec{p}_{b})+E_{s}(-\vec{p}_{b})\right]\left[E_{d}(\vec{p}_{b}+\vec{k})+E_{s}(-\vec{p}_{b})\right]}{E_{b}(\vec{p}_{b})E_{d}(\vec{p}_{b}+\vec{k})\left[E_{b}(\vec{p}_{b})+m_{b}\right]\left[E_{d}(\vec{p}_{b}+\vec{k})+m_{d}\right]}}$$

DECAY WIDTH

$$B_{g} \rightarrow \eta_{c} K_{g} \qquad B_{g} \rightarrow J/\psi K_{g}$$

$$\Gamma(B_{s} \rightarrow \eta_{c} K_{s}) = \frac{|\vec{k}|}{8\pi M^{2}} |A_{1}|^{2} |F_{0}(q^{2})|^{2}$$

$$|A_{1}| = \frac{G_{F}}{\sqrt{2}} V_{bc} V_{cd} a_{2} (M^{2} - m_{K_{s}}^{2}) f_{\eta_{c}}$$

$$F_{0}(q^{2}) = \left[\frac{q^{2}}{(M^{2} - m_{K_{s}}^{2})}\right] f_{-}(q^{2}) + f_{+}(q^{2})$$

$$\left[A_{2}| = \frac{G_{F}}{\sqrt{2}} V_{bc} V_{cd} 2a_{2} m_{J/\psi} f_{J/\psi}$$

$$F_{1}(q^{2}) = f_{+}(q^{2}) = \frac{1}{2} \int d\vec{p}_{b} C(\vec{p}_{b})$$

$$\left\{\left[E_{b}(\vec{p}_{b}) + m_{b}\right]\left[E_{d}(\vec{p}_{b} + \vec{k}) + m_{d}\right] + \vec{p}_{b}^{2} + \left[E_{b}(\vec{p}_{b}) + m_{b}\right]\left[M - E_{P}\right]\right\}$$

14

Numerical Analysis

INPUT PARAMETERS

For ground state we take the quark masses, corresponding binding energies and potential parameters:

(a, V_0)=(0.017166 GeV³,-0.1375 GeV)

$m_d = 0.07875$	$E_d = 0.47125$
$m_s = 0.31575$	$E_{s} = 0.591$
$m_c = 1.49275$	$E_c = 1.57951$
$m_b = 4.77659$	$E_b = 4.76633$

RESULTS

Decays	Our work	Exp. results
$B_s \to J/\psi K_s$	$2.023^{+0.325}_{-0.295}$	1.92 ± 0.14 [PDG]
$B_s \to \eta_c K_s$	$1.192^{+0.184}_{-0.162}$	-
$B_s \to \psi(2S)K_s$	$0.515^{+0.89}_{-0.506}$	$0.97 \pm 0.20(stat) \pm 0.03(syst)$
		$\pm 0.22(\frac{f_s}{f_d})$ [CMS2022]
$B_s \to \eta_c(2S)$	$0.0573^{+0.0638}_{-0.0375}$	-

(BF in 10⁻⁵)

R	Our Result	Exp. Result
$\frac{\mathcal{B}(B_s \to J/\psi K_s)}{\mathcal{B}(B_d \to J/\psi K_s)}$	$0.0454^{+0.006}_{-0.0057}$	$0.0431 \pm 0.0017 (stat) \pm 0.0012 (syst) \pm 0.0025 [LHCb2015]$
$\frac{\mathcal{B}(B_s \to \psi(2S)K_s)}{\mathcal{B}(B_d \to \psi(2S)K_s)}$	$0.0177^{+0.0269}_{-0.0173}$	$0.033 \pm 0.0069 (stat) \pm 0.0011(syst)$ [CMS2022]

Summary

- The resulting BFs of $B_s \rightarrow \psi(1S,2S)K_s$ obtained from our work align with experimental results, as reported by the LHCb and CMS Collaboration.
- Our predictions for $B_s \rightarrow \eta_c(1S, 2S)K_s$ will become a key reference for both experimentalists and theorists.
- To ensure thoroughness, additionally, we compute the ratio of BF of B_s to B_d for the same final states, $\psi(nS)$ with K_s .
- Our predictions in this analysis, achieved through a parameter-free unification within our model framework, aim to strengthen confidence in SM predictions and contribute to valuable discussions on the crucial B_s sector in flavor physics.

$$\begin{split} \langle P(p_P) | \bar{q}_c \gamma_\mu q_b | B_s(p) \rangle \\ &= \left[(p + p_P)_\mu - \frac{M^2 - m_P^2}{q^2} q_\mu \right] F_1(q^2) + \frac{M^2 - m_P^2}{q^2} q_\mu F_0(q^2) \\ &= (p + p_P)_\mu f_+(q^2) + (p - p_P)_\mu f_-(q^2), \end{split}$$

$$\begin{split} f_+(q^2) = F_1(q^2) \\ f_-(q^2) = \frac{M^2 - m_P^2}{q^2} \left[F_0(q^2) - F_1(q^2) \right] \end{split}$$

Numerical Analysis

INPUTS

Mesons	Mass(in MeV) ★	Decay constant (in MeV)
\boldsymbol{B}_{s}	5366.92 ± 0.10	-
K_s	497.61 ± 0.013	-
J/ψ	3096.9 ± 0.006	$418 \pm 8 \pm 5$
η_c	2983.9 ± 0.04	$387 \pm 7 \pm 2$
$\psi(2S)$	3686.1 ± 0.06	143 ± 81
$\eta_c(2S)$	3637.7 ± 1.1	$56 \pm 21 \pm 3$

PDG 2022

★ "Radiative transitions in charmonium from lattice QCD," Phys. Rev. D 73 (2006) 074507, arXiv:hep-ph/0601137.
 ★ "Charmonia decay constants from the QCD lattice and QCD sum rules," Nucl. Part. Phys. Proc. 273-275 (2016) 1611–1617

MESON	MESON MASS (GeV)		
	Prediction	Experiment	
$D^{\pm *}$	2.0149	2.0101	
D^{\pm}	1.8538	1.8694	
$D_s^{\pm *}$	2.0731	2.1103	
D_s^{\pm}	1.9149	1.9690	
$B^{\pm *}$	5.3292	5.3246	
B±	5.2643	5.2786	
B_{s}^{0*}	5.3720	5.4256	
B_s^0	5.3055	5.3786	
$B_c^{\pm *}$	6.3142		
B_c^{\pm}	6.2707	6.2749	

Published by Barik and Dash (i) *Phys.Rev*.D 33, 1925 (1986a) (ii) Pramana-J. Phys.29(6), 543-557 (1987)