

FERMILAB-SLIDES-24-0276-PPD

Latest Three-Flavor Neutrino Oscillation Results from NOvA

Brajesh Choudhary, Ishwar Singh, University of Delhi, Delhi, India

Louise Suter, Fermi National Accelerator Laboratory, US

On behalf of the NOvA Collaboration

PPC 2024 October 14-18, 2024 IIT Hyderabad

Neutrino Mixing and Oscillations

- Neutrinos are fundamental particles
 *** tiny non-zero masses
 - * comes in three flavors ν_e , ν_μ , ν_τ
- Flavor eigenstates are mixed with the mass eigenstates by a unitary matrix
- Neutrinos oscillate between flavor eigenstates
- The oscillation probability is given by

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{i} U_{\alpha i}^{*} e^{-i \frac{m_{i}^{2}L}{2E}} U_{\beta i} \right|^{2}$$

• Neutrino oscillations let us probe the elements of the mixing matrix

Sensitive to Δm_{32}^2 and mixing angle θ_{23} (resolution of octant degeneracy)

Sensitive to the CP-violating phase δ_{CP} , mixing angle θ_{13} (although mild) and mass ordering

The NOvA Experiment

- NuMI Off-axis ν_e Appearance Experiment
 - NuMI: Neutrinos at the Main Injector
 - Off-axis: Detectors situated 14.6 mrad off-axis to beam direction
 - $\nu_{\mu}(\bar{\nu}_{\mu})$ dis-appearance and $\nu_{e}(\bar{\nu}_{e})$ appearance
 - Functionally identical liquid scintillation detectors. ND and FD located at 1km and 810km from the beam source

• Primary Goals:

- Measure neutrino oscillation parameters
- Resolve neutrino mass ordering
- Resolve octant degeneracy
- Measure δ_{CP} , the CP-violating phase

Check out Prof. Bipul Bhuyan's talk from Plenary-I for the details

Beyond Neutrino Oscillations

- Non-standard interactions
- Neutrino cross-sections
- Sterile neutrinos
- Magnetic monopoles
- Dark matter
- And many more!

The NuMI beam line at Fermilab provides an intense $\nu/\bar{\nu}$ beam

How to Measure Neutrino Oscillations?

Observe how flavor changes with energy over a long distance, while mitigating uncertainties related to neutrino flux, interaction cross sections, and detector performance.

Credits: Alex Himmel

Near Detector Spectra

- The observed un-oscillated $\nu_{\mu}/\bar{\nu}_{\mu}$ candidates at the Near Detector
- We use this sample in predicting both the ν_{μ} and ν_{e} signal events at the Far Detector

Near Detector Spectra

- Dominant background: beam $\nu_e/\bar{\nu}_e$ events
- We use these samples in predicting the background events for the ν_e appearance analysis

Extrapolation: Mitigating Corrections

- Correct FD simulations by observing the differences in the ND data and simulations
 - Takes into account Far/Near transformation, oscillations, and detector acceptance
- Significantly reduces the impact of systematic uncertainties
 - e.g. uncertainty on neutrino cross-sections goes down from $\sim 15\%$ to $\sim 4-5\%$

Enhancing Sensitivity to Oscillations

 $\nu_{\mu}/\bar{\nu}_{\mu}$ Sample

 $\nu_e/\bar{\nu}_e$ Sample

New Low Energy ν_e Sample

- Developed a new selection to retain ν_e events in the low energy region where neutrino-anti neutrino asymmetry is maximal
- Improves sensitivity to mass orderings by ~few percent (depending on the oscillation parameters)
- No low energy events for the anti-neutrino beam mode

Far Detector $\nu_{\mu}(\bar{\nu}_{\mu})$ Observations

• Observed $\nu_{\mu}(\bar{\nu}_{\mu})$ candidates from 10 years of NOvA Data (neutrino beam exposure of 26.6 × 10²⁰ POT and anti-neutrino beam exposure of 12.5 × 10²⁰ POT)

Far Detector $\nu_e(\bar{\nu}_e)$ Observations

• Observed $\nu_e(\bar{\nu}_e)$ candidates from 10 years of NOvA Data (neutrino beam exposure of 26.6 × 10²⁰ POT and anti-neutrino beam exposure of 12.5 × 10²⁰ POT)

Fitting Procedure

- We perform a joint fit to $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance and $\nu_{e}/\bar{\nu}_{e}$ appearance data to extract oscillation parameters
- External constraints on solar parameters
- Reactor constraints on θ_{13} :
 - Unconstrained
 - Daya Bay 1D reactor constraint: $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$
 - Daya Bay 2D $(\Delta m_{32}^2, \theta_{13})$ constraint

PPC 2024, IIT Hyderabad, October 14-18, 2024

Results: I

	Frequentist results (w/ Daya Bay 1D θ ₁₃ constraint)				
	Normal MO		Inverted MO		
Δm_{32}^2 / 10 ⁻³ eV ²	+2.433	+0.035 -0.036	-2.473	+0.035 -0.035	
sin ² θ_{23}	0.546	+0.032 -0.075	0.539	+0.028 -0.075	
δ _{CP}	0.88 π		1.51 π		
Rejection significance (σ)			1.36		

- NOvA's measurements consistent with the rest of the accelerator and atmospheric experiments
- Δm_{32}^2 best-fit lies in the normal mass ordering (NO)
- $\sin^2(\theta_{23})$ best-fit value lies in the upper octant

Results: II

• NOvA data disfavors $\delta_{CP} = 3\pi/2$ in NO and $\delta_{CP} = \pi/2$ in IO

- The new NOvA measurements of δ_{CP} are consistent with our previous (2020) analysis
- The T2K, joint NOvA+T2K results favor different δ_{CP} regions in NO, same in IO

Synergy With Reactor Measurements

• NOvA data has a mild preference for the normal mass ordering

• Preference enhances with 1D and 2D reactor constraints

	No Constraint		1D Constraint		2D Constraint	
	Prob	BF	Prob	BF	Prob	BF
Normal Ordering Preference	69%	2.2	76%	3.2	87%	6.8

Results Contd.

NOvA produced the most precise (~1.5%) measurement of Δm_{32}^2 .

Conclusions

- ★ Latest three-flavor neutrino oscillation results from 10 years of NOvA data with doubled neutrino beam dataset (compared to 2020)
- * NOvA data prefers upper octant with reactor constraints on θ_{13} (prob=69%)
- * Mild preference to normal mass ordering (posterior prob. = 87%)
- * The most precise single experiment measurement of Δm_{32}^2 (precision=1.5%)
- * Frequentist best-fit values

	Frequentist results (w/ Daya Bay 1D θ ₁₃ constraint)			
	Norm	al MO	Invert	ted MO
Δm^2_{32} / 10 ⁻³ eV ²	+2.433	+0.035 -0.036	-2.473	+0.035 -0.035
$sin^2 \Theta_{23}$	0.546	+0.032 -0.075	0.539	+0.028 -0.075
δ _{CP}	0.88 π		1.51 π	
Rejection significance (σ)			1.36	

The NOvA Collaboration

Thank you for your attention!

PPC 2024, IIT Hyderabad, October 14-18, 2024

Back Up

Near-to-Far Extrapolation

- Functionally identical detectors cancel out systematic uncertainties on the best fit neutrino oscillation parameters
- The near detector (ND) data-MC differences are extrapolated in true energy bins to provide datadriven predictions of un-oscillated ν_{μ} ($\bar{\nu}_{\mu}$) and oscillated ν_{e} ($\bar{\nu}_{e}$) events at the far detector (FD)
- The ν_{μ} ($\bar{\nu}_{\mu}$) extrapolation is divided into 4 hadronic energy fraction quartiles to improve the sensitivity of the experiment
- Extrapolation is further divided into 3 bins of final state lepton transverse momentum (p_t) which takes into account the neutrino interaction mis-modeling and the differences in ND and FD

PPC 2024, IIT Hyderabad, October 14-18, 2024

Uncertainties on FD Predictions

<

Selection

20

Uncertainties on Oscillation Parameters

Source of Uncertainty	$\sin^2\theta_{23}$	δ_{CP}/π	$ \Delta m^2_{32} $ (×10 ⁻³ eV ²)
Beam Flux	+0.00042 / -0.00069	+0.0012 / -0.011	+0.00053 / -0.0012
Detector Calibration	+0.0033 / -0.017	+0.014 / -0.17	+0.013 / -0.016
Detector Response	+0.00031 / -0.0043	+0.004 / -0.037	+0.0016 / -0.0026
Lepton Reconstruction	+0.0027 / -0.0046	+0.007 / -0.034	+0.0083 / -0.014
Near-Far Uncor.	+0.0025 / -0.0024	+0.0072 / -0.043	+0.0022 / -0.0034
Neutrino Cross Sections	+0.0031 / -0.0051	+0.018 / -0.11	+0.0058 / -0.011
Neutron Uncertainty	+0.0028 / -0.00075	+0.0056 / -0.011	+0.0022 / -0.0041
Systematic Uncertainty	+0.0067 / -0.019	+0.027 / -0.21	+0.017 / -0.024
Statistical Uncertainty	+0.023 / -0.083	+0.081 / -0.76	+0.032 / -0.044

Table: Summary of uncertainties on Ana2024 frequentist joint best-fit point, evaluated at the NOUO best-fit values i.e. $\sin^2\theta_{23} = 0.55$, $\delta_{CP}/\pi = 0.88$, and $|\Delta m_{32}^2|$ (×10⁻³ eV²) = 2.43.

FD $\nu_{\mu}(\bar{\nu}_{\mu})$ Events By Quartiles

Ratios to No Oscillations

