Boosting HI-galaxy cross-clustering signal through higher-order cross-correlations

Eishica Chand¹, Arka Banerjee¹, Simon Foreman² and Francisco Villaescusa-Navarro^{3,4}

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.html#c1

→ This sharp line feature, and its redshifting $(\lambda_0 = \lambda_e(1+z))$, provide a window to **probe HI in both space and time**.

Image credit: [Roen Kelly/Discover magazine]

IllustrisTNG300 Simulation Data

HI observational challenges

1. Foregrounds (FGs):

Loss of small-k₁ modes

Cosmic Visions 21cm Collaboration, doi:10.48550

2. Thermal Noise Component:

In radio observations the thermal noise component, incorporates the effects of **sky and instrument temperature**, which contaminates the observed 21cm maps.

- → Due to HI survey contaminants, the HI IM signal hasn't been yet detected in auto-correlation studies.
- → Detection achieved via cross-correlating (two-point) HI field with other LSS tracers.
- → Two-point statistics limited by non-Gaussian clustering information, thus higher-order cross-correlation techniques are of importance.

 $|S+N| T_{b,HI}$: $S T_{b,HI}$ + Thermal Noise

, $F|S+N|T_{bHI}$: Filtered $|S+N|T_{bHI}$ field [CHIME Noise Model, $t_{obs} = 22 \text{ days}$] [F : 1 - exp(-k_z/k_{zmin})⁴, k_{zmin} = 0.3 h/Mpc]

k Nearest Neighbor(NN)-Field Framework

- Consider two datasets: one of discrete points and the other as a continuous field (ρ), both confined within a bounded volume. Finely sample the volume with another set of points (referred to as 'queries'), ensuring their number is much larger than that of the data points.
- □ Joint clustering between the datasets at distance r, $P(\geq k, \rho r^*)$: the joint probability of finding at least k^{th} nearest neighbor data point to a query point within r, along with the continuous field smoothed over r to exceed a threshold ($\rho r > \rho r^*$). This is a measure of Joint-Cumulative Distribution Functions (CDFs).
- □ Cross-clustering: defined as the Excess CDF over the auto-clustering of individual datasets, and given by $P(\geq k, \rho r^*)/(P(\geq k) \times P(\rho r^*))$.

Two-point Statistics (2PCFs)

- □ Discrete tracer-field correlations using **2PCFs** involves stacking of field over positions of discrete tracers.
- One has to compute the density of field enclosed within thin shell (radius r, thickness dr) at the positions of discrete tracers, denoted by $\rho_{enc}(r)$.
- □ The average of the enclosed density over all tracer positions, denoted by $\langle \rho_{enc}(r) \rangle$ captures the two-point **cross-correlation** between tracer and field.

Chi-Square Analysis

Quantification of total SNR and Hypothesis Testing:

- □ Null hypothesis No correlations between halos and HI fluctuations.
- Alternate hypothesis Correlations present.
- Covariance Matrix:

$$C(i,j) = \left\langle \left(D_R^p(i) - \left\langle D_R^p(i) \right\rangle \right) \left(D_R^p(j) - \left\langle D_R^p(j) \right\rangle \right) \right\rangle$$

Chi-Square value:

$$\chi_y^2 = \sum_{i,j=1}^{n_{\text{bin}}} \left(D_y(i) - \left\langle D_R^p(i) \right\rangle \right) C^{-1}(i,j) \left(D_y(j) - \left\langle D_R^p(j) \right\rangle \right)$$

Here D refers to data vector which for the case of kNN-field framework is 1NN Excess-Cdf measure, whereas it's the two-point cross correlation for the 2PCFs.

→ Gains from Improved Level of FG filtering and Thermal Noise levels

$T_{b,\mathbf{HI}}$ Field	$F^{p_2}: 1 - \exp\left(-k^2/k_{\parallel,\min}^2\right)$		$F^{p_4}: 1 - \exp\left(-\frac{k^2}{k_{\parallel,\min}^4}\right)$	
	<i>σ</i> _{2PCF}	σ_{1NN}	σ _{2PCF}	$\sigma_{\rm INN}$
$F_{0.05hMpc^{-1}} S + N_{4yrs} T_{b,H_1}$	75	173	80	173
$F_{0.1hMpc^{-1}} S + N_{4yrs} T_{b,H_1}$	60	176	58	167
$F_{0.15hMpc^{-1}} S + N_{4yrs} T_{b,H_1}$	43	181	44	167
$F_{0.2hMpc^{-1}} S + N_{4yrs} T_{b,H_1}$	27	177	33	163
$F_{0.25hMpc^{-1}} S + N_{4yrs} T_{b,H_1}$	18	181	41	162
$F_{0.3hMpc^{-1}} S + N_{4yrs} T_{b,H_1} $	15	180	57	163
$F_{0.3hMpc^{-1}} S + N_{1yr} T_{b,H_1}$	10	128	38	114
$F_{0.3hMpc^{-1}} S + N_{6mos} T_{b,H_1} $	9	98	29	85
$F_{0.3hMpc^{-1}} S + N_{2mos} T_{b,H_1} $	2.9	57	16	49
$F_{0.3h\text{Mpc}^{-1}} S + N_{22d} T_{b,\text{H}_{1}}$	0.8	37	8	31

Conclusions

- □ The *k*NN-Field framework consistently achieves higher HI-galaxy cross-clustering compared to 2PCFs, offering greater constraining power and reduced sensitivity to foreground filtering or instrumental noise.
- Applying this framework to 21 cm data from surveys like CHIME, alongside galaxy data from optical surveys such as eBOSS and DESI, shows significant potential.
- Ongoing work includes modeling the signal, which is particularly interesting due to the highly non-linear scales involved.

Thank You!

Acknowledgements

- → **IISER PUNE**, and it's supercomputing facility (**PARAM Brahma**).
- → Prime Minister Research Fellowship (PMRF), Ministry of Education, Government of India.