Finding the flavon of $\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry

Neelam Singh

Department of Physics, Indian Institute of Technology (BHU), Varanasi

October 16, 2024

17th International Conference on Interconnections between Particle Physics and Cosmology PPC 2024 : IIT Hyderabad

Based on:

[Eur. Phys. J. C 83, 4, 305 (2023)], G. Abbas, V. Singh, R. Sain and N. Singh

[arXiv:2407.09255 [hep-ph]] (accepted in Phys. Rev. D), G. Abbas, A. K. Alok, N. R. S. Chundawat, N. Khan and N. Singh Dedicated to the memory of

Prof. Ashutosh Kumar Alok

(IIT Jodhpur)

Outlines

- 1 Flavour problem of the Standard Model (SM)
- **2** $Z_N \times Z_M$ flavour symmetry
- 3 Constraints on the flavour scale
- Ollider signatures of the flavon
- **G** Summary

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

The SM flavour problem

Quark mixing angles: $\theta_{12} = 13.04^{\circ} \pm 0.05^{\circ}, \theta_{23} = 2.38^{\circ} \pm 0.06^{\circ}, \theta_{13} = 0.201^{\circ} \pm 0.011^{\circ 1}$

Leptonic mixing angles: $\theta_{12} = 33.41^{\circ+0.75^{\circ}}_{-0.72^{\circ}}, \theta_{23} = 49.1^{\circ+1.0^{\circ}}_{-1.3^{\circ}}, \theta_{13} = 8.54^{\circ+0.11^{\circ}}_{-0.12^{\circ}}$

¹PDG

 $\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry \mathbf{OOOO}

(

Constraints on the flavour scale

Collider signatures of the flavon 00000

Summary O

$\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry

• The Froggatt-Nielsen (FN) mechanism is achieved through an abelian U(1) symmetry by employing a flavon field (χ), which couples with the top quark at tree-level, and the masses of other fermions originate from the higher dimensional non-renormalizable operators of the following form,

$$\mathcal{D} = \mathbf{y}(\frac{\chi}{\Lambda})^{(\theta_i + \theta_j)} \bar{\psi} \varphi \psi,$$

= $\mathbf{y} \epsilon^{(\theta_i + \theta_j)} \bar{\psi} \varphi \psi = \mathbf{Y} \bar{\psi} \varphi \psi,$

where $\epsilon = \frac{\langle \chi \rangle}{\Lambda} < 1.^2$

• We introduce a framework based on discrete symmetry, $\underline{Z_N \times Z_M}$, imposed on the SM, and employ a gauge singlet flavon field (χ). ³ ⁴

²Froggatt and Nielsen 1979
 ³Int. J. Mod. Phys. A 34, no.20, 1950104 (2019), G. Abbas
 ⁴Int. J. Mod. Phys. A 36, 2150090 (2021), G.Abbas

 $\underset{0 \\ \bullet 000}{\mathcal{Z}_{M} \times \mathcal{Z}_{M}} \text{ flavour symmetry} \\$

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

$\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry

- The minimal realization of the $Z_N \times Z_M$ flavour symmetry turns out to be $Z_2 \times Z_5$. ⁵
- Other non-minimal forms are $\underline{Z_2 \times Z_9}$, $\underline{Z_2 \times Z_{11}}$, and $\underline{Z_8 \times Z_{22}}^6$ that also provide the set-up to achieve FN mechanism.
- The charge-assignment to the SM and flavon fields under these symmetries are,

Fields	\mathcal{Z}_2	\mathcal{Z}_5
u_R, c_R, t_R	+	ω^2
$\textit{d}_{\textit{R}}, \textit{s}_{\textit{R}}, \textit{b}_{\textit{R}}, \textit{e}_{\textit{R}}, \mu_{\textit{R}}, au_{\textit{R}}$	-	ω
$ u_{e_R}, \nu_{\mu_R}, \nu_{\tau_R}$	-	ω^3
ψ^1_L	+	ω_{i}
ψ_L^2	+	ω^4
ψ_L^3	+	ω^2
χ	-	ω
arphi	+	1

Fields	\mathcal{Z}_2	\mathcal{Z}_9
u_R, t_R	+	1
C _R	+	ω^4
$d_R, s_R, b_R, e_R, \mu_R, au_R$	-	ω^3
$ u_{e_B}, \nu_{\mu_B}$	+	ω^6
ν_{τ_B}	+	ω^7
ψ_I^{\dagger}	+	ω
ψ_I^{2}	+	ω^8
$\psi_L^{\bf 3}$	+	1
$\overline{\chi}$	-	ω
arphi	+	1

⁵Eur. Phys. J. C 83, 4, 305 (2023), G. Abbas, V. Singh, R. Sain and N. Singh ⁶Phys.Rev.D 108 (2023) 11, 115035, G. Abbas, R. Adhikari and E. J. Chun Constraints on the flavour scale

Collider signatures of the flavon 00000

Summary O

Masses and mixing patterns

• The masses of quarks and charged leptons in terms of the expansion parameter ϵ (< 1), up to leading-order are, 7

masses	$Z_2 \times Z_5$	$\mathcal{Z}_2 \times \mathcal{Z}_9$
$\{m_t, m_c, m_U\}$	$\simeq \{ y^u_{33} , \; y^u_{22} \epsilon^2, \; y^u_{11} \epsilon^4 \} v / \sqrt{2}$	$\simeq \{ y^u_{33} , \; y^u_{22} \epsilon^4, \; y^u_{11} \epsilon^8 \} v / \sqrt{2}$
$\{m_b, m_s, m_d\}$	$\simeq \{ y^d_{33} \epsilon, \; y^d_{22} \epsilon^3 \; y^d_{11} \epsilon^5 \} v / \sqrt{2} $	$\simeq \{ y^d_{33} \epsilon^3, \; y^d_{22} \epsilon^5, \; y^d_{11} \epsilon^7 \} v / \sqrt{2}$
$\{m_{\tau},m_{\mu},m_{\theta}\}$	$\simeq \{ y_{33}^{l} \epsilon, \; y_{22}^{l} \epsilon^{3}, \; y_{11}^{l} \epsilon^{5} \} v / \sqrt{2}$	$\simeq \{ y_{33}^{l} \epsilon^{3}, \; y_{22}^{l} \epsilon^{5}, \; y_{11}^{l} \epsilon^{7} \} v/\sqrt{2}$

masses	$Z_2 \times Z_{11}$	$\mathcal{Z}_8 imes \mathcal{Z}_{22}$
$\{m_t, m_C, m_U\}$	$\simeq \{ y^{u}_{33} , \; y^{u}_{22} \epsilon^{6}, \; y^{u}_{11} \epsilon^{10} \} v / \sqrt{2}$	$\simeq \{ y^{u}_{33} \epsilon, y^{u}_{22} \epsilon^{4}, y^{u}_{11} \epsilon^{8}\}v/\sqrt{2}$
$\{m_b, m_s, m_d\}$	$\simeq \{ y^d_{33} \epsilon^3, \; y^d_{22} \epsilon^7, \; y^d_{11} \epsilon^9 \} v / \sqrt{2} $	$\simeq \{ y^d_{33} \epsilon^3, \; y^d_{22} \epsilon^5, \; y^d_{11} \epsilon^7 \} v/\sqrt{2}$
$\{m_{\tau},m_{\mu},m_{\theta}\}$	$\simeq \{ y_{33}^{l} \epsilon^{3}, \; y_{22}^{l} \epsilon^{7}, \; y_{11}^{l} \epsilon^{9} \} v / \sqrt{2} $	$\simeq \{ y_{33}^{l} \epsilon^{3}, \; y_{22}^{l} \epsilon^{5}, \; y_{11}^{l} \epsilon^{9} \} v / \sqrt{2}$

where $\epsilon = 0.1$ for $Z_2 \times Z_5$, $\epsilon = 0.23$ for $Z_2 \times Z_9$, $\epsilon = 0.28$ for $Z_2 \times Z_{11}$, and $\epsilon = 0.23$ for $Z_8 \times Z_{22}$ are used to produce the masses and mixing patterns of fermions.

⁷[arXiv:2407.09255 [hep-ph]](accepted in Phys. Rev. D) , G. Abbas, A. K. Alok, N. R. S. Chundawat, N. Khan and N. Singh

 $\begin{array}{c} \mathcal{Z}_N \times \mathcal{Z}_M \text{ flavour symmetry} \\ \text{OOO} \bullet \text{O} \end{array}$

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

Masses and mixing patterns

• The mixing angles of quarks are obtained as,

Quark mixing angles	$\mathcal{Z}_2 \times \mathcal{Z}_5$	$\mathcal{Z}_2 \times \mathcal{Z}_9$
$\sin \theta_{12} \simeq V_{US} $	$\simeq egin{array}{c} rac{y_{12}^d}{y_{22}^d} - rac{y_{12}^u}{y_{22}^d} \ \epsilon^2 \end{array}$	$\simeq rac{y_{12}^d}{y_{22}^d} - rac{y_{12}^u}{y_{22}^u} \ \epsilon^2$
$\sin\theta_{23}\simeq V_{CD} $	$\simeq rac{y^{d}_{23}}{y^{d}_{33}} - rac{y^{U}_{23}}{y^{U}_{33}} \epsilon^{2}$	$\simeq \left rac{y^d_{23}}{y^d_{33}} ight \epsilon^2$
$\sin \theta_{13} \simeq V_{ub} $	$\simeq \left rac{y_{13}^d}{y_{33}^d} - rac{y_{12}^u y_{23}^d}{y_{22}^u y_{33}^d} - rac{y_{13}^u}{y_{33}^u} ight \epsilon^4$	$\simeq \left rac{y^d_{13}}{y^d_{33}} - rac{y^u_{12}y^d_{23}}{y^u_{22}y^d_{33}} ight \epsilon^4$

Quark mixing angles	$Z_2 \times Z_{11}$	$\mathcal{Z}_8 \times \mathcal{Z}_{22}$
$\sin \theta_{12} \simeq V_{US} $	$\simeq \left \frac{y_{12}^d}{y_{22}^d} \right \epsilon^2$	$\simeq \left rac{y_{12}^d}{y_{22}^d} - rac{y_{12}^u}{y_{22}^U} ight \epsilon$
$\sin\theta_{23}\simeq V_{cb} $	$\simeq rac{y^d_{23}}{y^d_{33}} - rac{y^u_{23}}{y^u_{33}} \epsilon^4$	$\simeq rac{y^{d}_{23}}{y^{d}_{33}} - rac{y^{U}_{23}}{y^{U}_{33}} \epsilon^{2}$
$\sin \theta_{13} \simeq V_{ub} $	$\simeq \left \frac{y_{13}^d}{y_{33}^d} \right \epsilon^6$	$\simeq \left \frac{y_{13}^d}{y_{33}^d} - \frac{y_{12}^u y_{23}^d}{y_{22}^u y_{33}^d} - \frac{y_{13}^u}{y_{33}^u} \right \epsilon^3$

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

The scalar potential

• The scalar potential of the model can be written in the following form,

$$-\mathcal{L}_{\mathsf{potential}} = -\mu^2 arphi^\dagger arphi + \lambda (arphi^\dagger arphi)^2 - \mu_\chi^2 \, \chi^* \chi + \lambda_\chi \left(\chi^* \chi
ight)^2 + \lambda_{arphi \chi} (\chi^* \chi) (arphi^\dagger arphi).$$

• The flavon field (χ) can be parametrized by excitations around its VEV,

$$\chi(x) = \frac{f + s(x) + i a(x)}{\sqrt{2}}$$

Softly broken scalar potential

Symmetry conserving scalar potential

$$V_{\rho} = \rho \ \chi^2 + \text{H.c.}$$

$$m_s = \sqrt{\mu_\chi - 2
ho} = \sqrt{\lambda_\chi} f$$
 and $m_a = \sqrt{2
ho}$

$$V_{ ilde{N}} = -\lambda rac{\chi^{ ilde{N}}}{\Lambda^{ ilde{N}-4}} + ext{H.c.}$$
 $m_a^2 = rac{1}{8} |\lambda| ilde{N}^2 \epsilon^{ ilde{N}-4} f^2$

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

Quark flavour constraints on the flavour scale

$$C_{\epsilon_{K}} = \frac{\text{Im}\langle K^{0} | \mathcal{H}_{\text{eff}}^{\Delta F = 2} | \bar{K}^{0} \rangle}{\text{Im}\langle K^{0} | \mathcal{H}_{\text{SM}}^{\Delta F = 2} | \bar{K}^{0} \rangle} = 1.12^{+0.278}_{-0.25}, C_{\Delta m_{K}} = \frac{\text{Re}\langle K^{0} | \mathcal{H}_{\text{eff}}^{\Delta F = 2} | \bar{K}^{0} \rangle}{\text{Re}\langle K^{0} | \mathcal{H}_{\text{SM}}^{\Delta F = 2} | \bar{K}^{0} \rangle} = 0.93^{+1.148}_{-0.42}$$

⁸@95% C.L. , M. Bona et al. 2007, [UTFIT]

Constraints on the flavour scale $O \oplus O$

Collider signatures of the flavon

Summary O

Leptonic flavour constraints

Observables	Current sensitivity	Ref.	Future projection	Ref.
$BR(\mu o oldsymbol{e}\gamma$)	$< 4.2 imes 10^{-13}$	MEG	$6 imes 10^{-14}$	MEG2
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Au}$	$< 7 imes 10^{-13}$	SINDRUM 2	_	_
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Al}$	_	_	$3 imes 10^{-15}$	COMET Phase-1
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Al}$	_	_	$6 imes 10^{-17}$	COMET Phase-2
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Al}$	_	_	$6 imes 10^{-17}$	Mu2e
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Al}$	_	_	$3 imes 10^{-18}$	Mu2e 2
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Si}$	_	_	$2 imes 10^{-14}$	DeeMe
BR ($\mu ightarrow oldsymbol{e}$) $^{ m Ti}$			$\sim 10^{-20} - 10^{-18}$	PRISM/PRIME
BR($\mu ightarrow$ 3 <i>e</i>)	$< 1.0 imes 10^{-12}$	SINDRUM	$\sim 10^{-16}$	Mu3e

Table: Experimental upper limits on various Leptonic flavour violation (LFV) processes.⁹

⁵Eur. Phys. J. C 83, 4, 305 (2023), G. Abbas, V. Singh, R. Sain, and N. Singh

 $\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry 00000

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

Leptonic flavour constraints

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

Collider signatures of the flavon

 $pp
ightarrow a
ightarrow f_i ar{f}_j / \gamma \gamma$

<i>m</i> _a [GeV]	HL-LHC [14	4 TeV, 3 <i>ab⁻¹]</i>	HE-LHC [27	' TeV, 15 <i>ab^{—1}]</i>	100 TeV,	30 <i>ab</i> ⁻¹
	500	1000	500	1000	500	1000
jet-jet [pb] au au [pb] <i>ee</i> , $\mu\mu$ [pb] μe [pb] μau [pb] e au [pb] b b [pb] $\gamma \gamma$ [pb] t b t [pb]	$7 \cdot 10^{-3} \\ 2 \cdot 10^{-4} \\ 9 \cdot 10^{-4} \\ 2 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 4$	$\begin{array}{c} 4 \cdot 10^{-2} \\ 1 \cdot 10^{-3} \\ 4 \cdot 10^{-5} \\ 7 \cdot 10^{-5} \\ 2 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 9 \cdot 10^{-3} \\ 2 \cdot 10^{-5} \\ 5 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 4 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 7 \cdot 10^{-4} \\ 1 \cdot 10^{-3} \\ 8 \cdot 10^{-4} \\ 6 \cdot 10^{-5} \\ 3 \end{array}$	$3 \cdot 10^{-2} \\ 7 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ 5 \cdot 10^{-5} \\ 2 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 5 \cdot 10^{-3} \\ 1 \cdot 10^{-5} \\ 4 \cdot 10^{-2} \\ \end{bmatrix}$	$5 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 1 \cdot 10^{-3} \\ 2 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ 7 \cdot 10^{-5} \\ 8$	$\begin{array}{c} 4\cdot 10^{-2} \\ 8\cdot 10^{-4} \\ 3\cdot 10^{-5} \\ 1\cdot 10^{-4} \\ 3\cdot 10^{-4} \\ 3\cdot 10^{-4} \\ 7\cdot 10^{-3} \\ 1\cdot 10^{-5} \\ 0.1 \end{array}$

Table: Estimated reach ($\sigma \times BR$) of the future colliders

 $\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry 00000

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

	Bench	imark	Bench	nmark	Bench	nmark	Benchi	mark
	$Z_2 \times$	$< \mathcal{Z}_5$	\mathcal{Z}_2 >	$\times \mathcal{Z}_9$	$Z_2 \times$	\mathcal{Z}_{11}	$Z_8 \times$	\mathcal{Z}_{22}
<i>m</i> _a [GeV]	500	1000	500	1000	500	1000	500	1000
jet-jet [pb]		$3.6\cdot10^{-2}$		$1.5 \cdot 10^{-6}$		$2.3 \cdot 10^{-7}$		$1.4 \cdot 10^{-3}$
au au [pb]	$1.2 \cdot 10^{-3}$	$9.2 \cdot 10^{-5}$	$8.0\cdot10^{-5}$	$3.4\cdot10^{-6}$	$2.9\cdot10^{-5}$	$1.6 \cdot 10^{-6}$	$3.4\cdot10^{-3}$	$6.1 \cdot 10^{-5}$
μau [pb]	$1.4 \cdot 10^{-3}$	$1.1 \cdot 10^{-4}$	$2.3\cdot 10^{-4}$	$9.5\cdot10^{-6}$	$3\cdot 10^{-5}$	$1.7\cdot 10^{-6}$	$5.8\cdot10^{-3}$	$1 \cdot 10^{-4}$
<i>e</i> τ [pb]	1.1 · 10 ⁻³	$8.9\cdot 10^{-5}$	$2.2\cdot 10^{-4}$	$9.4\cdot10^{-6}$	$8.5\cdot10^{-5}$	$4.7\cdot 10^{-6}$	$3.2\cdot10^{-4}$	$5.8\cdot10^{-6}$
$\mu\mu$ [pb]	$1.1 \cdot 10^{-6}$	$8.3 \cdot 10^{-8}$	$1.7 \cdot 10^{-6}$	$7.3 \cdot 10^{-8}$	$2.2 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$	$2.9 \cdot 10^{-5}$	$5.3\cdot10^{-7}$
<i>ee</i> [pb]	$2.5 \cdot 10^{-10}$	$2 \cdot 10^{-11}$	$3.4\cdot10^{-9}$	$1.4 \cdot 10^{-10}$	$6.7 \cdot 10^{-11}$	$3.7 \cdot 10^{-12}$	$1.7 \cdot 10^{-9}$	$3 \cdot 10^{-11}$
$\gamma\gamma$ [pb]	$1.3 \cdot 10^{-7}$	$3.6\cdot10^{-9}$	$8.2\cdot10^{-10}$	$1.2\cdot10^{-11}$	$1.5\cdot10^{-10}$	$3\cdot 10^{-12}$	$6.6 \cdot 10^{-4}$	$1 \cdot 10^{-5}$
<i>b</i> b̄ [pb]	$9.8 \cdot 10^{-3}$	$6.3\cdot10^{-4}$	$4.7\cdot 10^{-4}$	$1.9 \cdot 10^{-5}$	$1.2 \cdot 10^{-4}$	$5.7\cdot 10^{-6}$	$1.9 \cdot 10^{-2}$	$3.2\cdot10^{-4}$
<i>tī</i> [pb]							4.42	0.12

Table: Benchmark points at 14 TeV, 3ab⁻¹ HL-LHC

 $\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry 00000

Constraints on the flavour scale

Collider signatures of the flavon 00●00

Summary O

	Bench	mark	Bench	nmark	Bench	nmark	Bench	mark
<i>m</i> _a [GeV]	500 22	1000	500 22	²⁹ 1000	500 2 1	1000	500 28 ^	1000
jet-jet [pb]		0.133		$8.2\cdot10^{-6}$		$9.4\cdot 10^{-7}$		$9.8\cdot10^{-3}$
au au [pb]	$2.6 \cdot 10^{-3}$	$2.8 \cdot 10^{-4}$	$2.9\cdot10^{-4}$	$1.7 \cdot 10^{-5}$	$8\cdot10^{-5}$	$5.6 \cdot 10^{-6}$	$1.5 \cdot 10^{-2}$	$4 \cdot 10^{-4}$
μau [pb]	$3.2\cdot10^{-3}$	$3.5\cdot10^{-4}$	$8.3\cdot10^{-4}$	$4.8\cdot10^{-5}$	$8.4\cdot10^{-5}$	$5.8\cdot 10^{-6}$	$2.5\cdot10^{-2}$	$6.8\cdot 10^{-4}$
<i>e</i> τ [pb]	$2.6\cdot10^{-3}$	$2.8\cdot 10^{-4}$	$8.2\cdot 10^{-4}$	$4.8\cdot 10^{-5}$	$2.3\cdot10^{-4}$	$1.6\cdot10^{-5}$	$1.4\cdot 10^{-3}$	$3.8\cdot10^{-5}$
$\mu\mu$ [pb]	$2.4\cdot10^{-6}$	$2.6\cdot 10^{-7}$	$6.4\cdot10^{-6}$	$3.7\cdot10^{-7}$	$6.2\cdot10^{-7}$	$4.3\cdot 10^{-8}$	$1.3\cdot 10^{-4}$	$3.5 \cdot 10^{-6}$
<i>ee</i> [pb]	$5.6 \cdot 10^{-10}$	$6.1 \cdot 10^{-11}$	$1.3 \cdot 10^{-8}$	$7.4 \cdot 10^{-10}$	$1.8 \cdot 10^{-10}$	$1.3 \cdot 10^{-11}$	$7.2 \cdot 10^{-9}$	$1.9 \cdot 10^{-10}$
$\gamma\gamma$ [pb]	$2.9 \cdot 10^{-7}$	$1.1 \cdot 10^{-8}$	$3\cdot 10^{-9}$	$6.3\cdot10^{-11}$	$4.2\cdot 10^{-10}$	$1.1\cdot10^{-11}$	$2.8\cdot10^{-3}$	$6.7\cdot10^{-5}$
<i>b</i> b [pb]	$2.7 \cdot 10^{-2}$	$2.3 \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$3.8 \cdot 10^{-4}$	$2.3 \cdot 10^{-5}$	$8.8 \cdot 10^{-2}$	$2.2 \cdot 10^{-3}$
<i>t</i> ī [pb]							20.46	0.83

Table: Benchmark points at 27 TeV, 15ab⁻¹ HE-LHC

 $\mathcal{Z}_N \times \mathcal{Z}_M$ flavour symmetry 00000

Constraints on the flavour scale

Collider signatures of the flavon

Summary O

	Bench	mark	Benchmark		Benchmark		Benchmark	
<i>m</i> a [GeV]	500 22	1000	500 22 1	1000	500 22 ~	1000	500 28 ^	1000
jet-jet [pb]		0.95		$1.1 \cdot 10^{-4}$		$8.1 \cdot 10^{-6}$		0.18
au au [pb]	$1.1 \cdot 10^{-2}$	$1.4\cdot 10^{-3}$	$2.2\cdot 10^{-3}$	$1.9\cdot10^{-4}$	$4.8 \cdot 10^{-4}$	$3.8\cdot10^{-5}$	0.14	$6.2\cdot10^{-3}$
μau [pb]	$1.3\cdot10^{-2}$	$1.7\cdot 10^{-3}$	$6.3\cdot10^{-3}$	$5.5\cdot 10^{-4}$	$5\cdot 10^{-4}$	$3.9\cdot10^{-5}$	0.23	$1.0\cdot10^{-2}$
<i>e</i> τ [pb]	$1.1 \cdot 10^{-2}$	$1.4\cdot 10^{-3}$	$6.2\cdot10^{-3}$	$5.4\cdot 10^{-4}$	$1.3\cdot 10^{-3}$	$1.1 \cdot 10^{-4}$	$1.3 \cdot 10^{-2}$	$5.9\cdot 10^{-4}$
$\mu\mu$ [pb]	$9.9\cdot10^{-5}$	$1.3 \cdot 10^{-6}$	$4.8\cdot 10^{-5}$	$4.2\cdot10^{-6}$	$3.7\cdot10^{-6}$	$2.9 \cdot 10^{-7}$	$1.2 \cdot 10^{-3}$	$5.4\cdot 10^{-5}$
<i>ee</i> [pb]	$2.4 \cdot 10^{-9}$	$3.0 \cdot 10^{-10}$	$9.6 \cdot 10^{-8}$	$8.4 \cdot 10^{-9}$	$1.1 \cdot 10^{-9}$	$8.8 \cdot 10^{-11}$	$6.9 \cdot 10^{-8}$	$3.0 \cdot 10^{-9}$
$\gamma\gamma$ [pb]	$1.2 \cdot 10^{-6}$	$5.6 \cdot 10^{-8}$	$2.3 \cdot 10^{-8}$	$7.2 \cdot 10^{-10}$	$2.5 \cdot 10^{-9}$	$7.2 \cdot 10^{-11}$	$2.7 \cdot 10^{-2}$	$1 \cdot 10^{-3}$
<i>b</i> b̄ [pb]	0.15	$1.7\cdot10^{-2}$	$1.7 \cdot 10^{-2}$	$1.3 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$	$2 \cdot 10^{-4}$	1.03	$4.1\cdot10^{-2}$
<i>tī</i> [pb]							241.4	15.4

Table: Benchmark points for a 100 TeV, 30*ab*⁻¹ hadron collider

Constraints on the flavour scale

Collider signatures of the flavon 0000●

Anomalous top decays

Summary O

Constraints on the flavour scale

Collider signatures of the flavon

Summary

Conclusions

- The $Z_N \times Z_M$ flavour symmetry in a unique and novel framework that can effectively address the flavour problem of the SM.
- We have investigated the bounds on the flavour scale of the minimal and non-minimal versions of this symmetry using the current as well as the future projected sensitivities of the quark and lepton flavour physics data.
- The HL-LHC will be able to probe the signatures of the flavon of $Z_2 \times Z_5$ and the $Z_8 \times Z_{22}$ flavour symmetries.
- In addition to the $Z_2 \times Z_5$ and the $Z_8 \times Z_{22}$, HE-LHC will be sensitive to $Z_2 \times Z_9$ flavour symmetry through few specific inclusive signatures.
- The future 100 TeV collider will be decisive to test all of these four $Z_N \times Z_M$ flavour symmetries at the experimental frontiers.

Constraints on the flavour scale

Collider signatures of the flavon

Summary

Conclusions

- The $Z_N \times Z_M$ flavour symmetry in a unique and novel framework that can effectively address the flavour problem of the SM.
- We have investigated the bounds on the flavour scale of the minimal and non-minimal versions of this symmetry using the current as well as the future projected sensitivities of the quark and lepton flavour physics data.
- The HL-LHC will be able to probe the signatures of the flavon of $Z_2 \times Z_5$ and the $Z_8 \times Z_{22}$ flavour symmetries.
- In addition to the $Z_2 \times Z_5$ and the $Z_8 \times Z_{22}$, HE-LHC will be sensitive to $Z_2 \times Z_9$ flavour symmetry through few specific inclusive signatures.
- The future 100 TeV collider will be decisive to test all of these four $Z_N \times Z_M$ flavour symmetries at the experimental frontiers.

Thank you !

Backup slides

The couplings of the scalar and pseudoscalar components of the flavon field are obtained by writing the effective Yukawa couplings in the following form:

$$Y_{ij}^{f}\varphi = y_{ij}^{f}\left(\frac{\chi}{\Lambda}\right)^{n_{ij}^{f}}\left(\frac{\nu+h}{\sqrt{2}}\right) \cong y_{ij}^{f}\epsilon^{n_{ij}^{f}}\frac{\nu}{\sqrt{2}}\left[1 + \frac{n_{ij}^{f}(s+ia)}{f} + \frac{h}{\nu}\right] = M_{f}\left[1 + \frac{n_{ij}^{f}(s+ia)}{f} + \frac{h}{\nu}\right], \quad (1)$$

The couplings of *a* field with fermions for minimal $Z_2 \times Z_5$ symmetry are given by,

$$y^{u}_{af_{lL}f_{lR}} \equiv y^{u}_{aij} = \frac{v}{\sqrt{2}f} \begin{pmatrix} 4y^{u}_{11}\epsilon^{4} & 4y^{u}_{12}\epsilon^{4} & 4y^{u}_{13}\epsilon^{4} \\ 2y^{u}_{21}\epsilon^{2} & 2y^{u}_{22}\epsilon^{2} & 2y^{u}_{23}\epsilon^{2} \\ 0 & 0 & 0 \end{pmatrix}, y^{d}_{aij} = \frac{v}{\sqrt{2}f} \begin{pmatrix} 5y^{d}_{11}\epsilon^{5} & 5y^{d}_{12}\epsilon^{5} & 5y^{d}_{13}\epsilon^{5} \\ 3y^{d}_{21}\epsilon^{3} & 3y^{d}_{22}\epsilon^{3} & 3y^{d}_{23}\epsilon^{3} \\ y^{d}_{31}\epsilon & y^{d}_{32}\epsilon & y^{d}_{33}\epsilon \end{pmatrix},$$
(2)
$$y^{\ell}_{aij} = \frac{v}{\sqrt{2}f} \begin{pmatrix} 5y^{\ell}_{11}\epsilon^{5} & 5y^{\ell}_{12}\epsilon^{5} & 5y^{\ell}_{13}\epsilon^{5} \\ 3y^{\ell}_{21}\epsilon^{3} & 3y^{d}_{22}\epsilon^{3} & 3y^{\ell}_{23}\epsilon^{3} \\ y^{\ell}_{31}\epsilon & y^{d}_{32}\epsilon & y^{\ell}_{33}\epsilon \end{pmatrix}.$$

In the similar way, the couplings of *a* field with fermions for non-minimal $Z_2 \times Z_9$ symmetry are given by

$$y^{u}_{af_{L}f_{jR}} \equiv y^{u}_{aij} = \frac{v}{\sqrt{2}f} \begin{pmatrix} 8y^{u}_{11}\epsilon^{8} & 6y^{u}_{12}\epsilon^{6} & 8y^{u}_{13}\epsilon^{8} \\ 8y^{u}_{21}\epsilon^{8} & 4y^{u}_{22}\epsilon^{4} & 8y^{u}_{23}\epsilon^{8} \\ 0 & 4y^{u}_{22}\epsilon^{4} & 0 \end{pmatrix}, y^{d}_{aij} = \frac{v}{\sqrt{2}f} \begin{pmatrix} 7y^{d}_{11}\epsilon^{7} & 7y^{d}_{12}\epsilon^{7} & 7y^{d}_{13}\epsilon^{7} \\ 5y^{d}_{21}\epsilon^{5} & 5y^{d}_{22}\epsilon^{5} & 5y^{d}_{23}\epsilon^{5} \\ 3y^{d}_{31}\epsilon^{3} & 3y^{d}_{32}\epsilon^{3} & 3y^{d}_{33}\epsilon^{3} \end{pmatrix},$$
(3)
$$y^{\ell}_{aij} = \frac{v}{\sqrt{2}f} \begin{pmatrix} 7y^{\ell}_{11}\epsilon^{7} & 7y^{\ell}_{12}\epsilon^{7} & 7y^{\ell}_{12}\epsilon^{7} \\ 5y^{\ell}_{21}\epsilon^{5} & 5y^{\ell}_{22}\epsilon^{5} & 5y^{\ell}_{23}\epsilon^{5} \\ 3y^{\ell}_{21}\epsilon^{3} & 3y^{\ell}_{32}\epsilon^{3} & 3y^{\ell}_{33}\epsilon^{3} \end{pmatrix}.$$

The tree-level contribution to neutral meson mixing due to the flavon exchange gives rise to the following Wilson coefficients,

$$egin{aligned} C_2^{ij} &= -(y_{ji}^*)^2 \left(rac{1}{m_s^2} - rac{1}{m_a^2}
ight) \ ilde{C}_2^{ij} &= -y_{ij}^2 \left(rac{1}{m_s^2} - rac{1}{m_a^2}
ight) \ C_4^{ij} &= -rac{y_{ij}y_{ji}}{2} \left(rac{1}{m_s^2} + rac{1}{m_a^2}
ight), \end{aligned}$$

(4)