

Studies of radiative and electroweak penguin decays of B mesons at Belle and Belle II

erc

Nadiia Maslova

nadiia.maslova@oeaw.ac.at

HEPHY Vienna on behalf of Belle/Belle II collaborations

PPC 2024 – the 17th International Conference on Interconnections between Particle Physics and Cosmology 14-18 October 2024, Hyderabad, India

Electroweak decays

- b → s/d transitions forbidden at tree level in SM
 occur at loop level
- low branching fractions experimentally challenging
- clear theoretical predictions sensitive probes for NP contributions

$$\mathcal{H}_{eff}^{SM} = \frac{-4G_F}{\sqrt{2}} \lambda_t^q \left[\sum \mathcal{C}_i \mathcal{Q}_i + \kappa_q \sum \mathcal{C}_i \left(\mathcal{Q}_i - \mathcal{Q}_i^u \right) \right]$$
$$\kappa_q = \frac{\lambda_u^q}{\lambda_t^q} = \frac{V_{uq}^* V_{ub}}{V_{tq}^* V_{tb}}$$

Belle&Belle II

- KEKB → SuperKEKB
- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
- $e^+e^- \rightarrow q\bar{q}$ continuum background (x5 times of $B\bar{B}$)
- Known initial state, clean environment

 $\Delta E = E_B^* - E_{beam}^*$ $M_{bc} = \sqrt{(E_{beam}^*)^2 - |p_B^*|^2}$

Belle II detector

*some analysis quote $362 f b^{-1}$

Studies of radiative and EWP penguin decays Belle/II. PPC 2024

$B^0 \to \gamma \gamma$

- W boson emitted and reabsorbed
- Suppressed in comparison to $B_s \rightarrow \gamma \gamma$ by factor ~25, due to CKM elements hierarchy
- No charged particles in final states, only studies at B factories

Theory	Babar	Belle (104 fb ⁻¹)
prediction	$(\times 10^{-7})$	$(\times 10^{-7})$
$(\times 10^{-8})$		
$1.4^{+1.4}_{-0.8}$	3.2	6.2

Theory prediction and previous searches, UL 90%

Box and penguin diagrams in SM

$B^0 \to \gamma \gamma$

- 2 consecutive BDT classifiers trained π^0 and continuum rejection
- Overall signal efficiencies
 - $23.3 \pm 0.1\%$ Belle
 - 30.8 \pm 0.1% Belle II
- Simultaneous 3D unbinned maximum likelihood fit in ΔE , M_{bc} and C_{BDT}^{\prime} variables
- Dominant systematics uncertainty photon efficiency
- Obtained UL 5 times more restrictive than the previous BaBar result

Combined Belle+Belle II

[Phys. Rev. D 110, L031106]

$B \to \rho \gamma$

- Involves $b \rightarrow d$ transition can be affected by NP not present in $b \rightarrow s$, BF one order of magnitude smaller
- World average for $\mathcal{A}_I: 0.30^{+0.16}_{-0.13}$
- Predicted SM value for $\mathcal{A}_I: 0.052 \pm 0.028$
- Tension with SM observed in \mathcal{A}_I

CP-averaged isospin asymmetry

$$A_{\rm I} = \frac{c_{\rho}^2 \Gamma(\stackrel{(-)}{B^0} \to \rho^0 \gamma) - \Gamma(B^{\pm} \to \rho^{\pm} \gamma)}{c_{\rho}^2 \Gamma(\stackrel{(-)}{B^0} \to \rho^0 \gamma) + \Gamma(B^{\pm} \to \rho^{\pm} \gamma)},$$

$$A_{CP}(B \to \rho \gamma) = \frac{\Gamma\left(\overline{B} \to \overline{\rho}\gamma\right) - \Gamma\left(B \to \rho\gamma\right)}{\Gamma\left(\overline{B} \to \overline{\rho}\gamma\right) + \Gamma\left(B \to \rho\gamma\right)}$$

$B \to \rho \gamma$

- Signal modes: $B^+ \to \rho^+(\pi^0\pi^+)\gamma$, $B^0 \to \rho^0(\pi^+\pi^-)\gamma$
- 2 BDT classifiers trained π^0 and continuum rejection
- Simultaneous fit in ΔE , M_{bc} and $M_{K\pi}$ (useful to reject $B \to K^* \gamma$ background) variables
- Dominant systematics selection criteria (data/MC agreement after BDTs evaluated in control channels $B \rightarrow D\pi$ and $B \rightarrow K^* \gamma$)
- Obtained result most precise up-to-date
- \mathcal{A}_I in agreement with SM prediction

$$\mathcal{B} \left(B^+ \to \rho^+ \gamma \right) = \left(13.1^{+2.0+1.3}_{-1.9-1.2} \right) \times 10^{-7}$$
$$\mathcal{B} \left(B^0 \to \rho^0 \gamma \right) = \left(7.5 \pm 1.3^{+1.0}_{-0.8} \right) \times 10^{-7}$$
$$A_{CP} \left(B^+ \to \rho^+ \gamma \right) = \left(-8.2 \pm 15.2^{+1.6}_{-1.2} \right) \%$$
$$A_{I} \left(B \to \rho \gamma \right) = \left(10.9^{+11.2+6.8+3.8}_{-11.7-6.2-3.9} \right) \%,$$

[arXiv:2407.08984]

$b \rightarrow dl^+ l^-$

- $B \rightarrow {\pi, \omega, \eta, \rho} l^+ l^-, l = e, \mu$
- Previous searches:
 - UL for $B \to {\pi, \eta}l^+l^-$ by Babar and Belle, order of 10⁻⁸
 - $\mathcal{B}r(B^+ \to \pi^+ \mu \mu) = (1.78 \pm 0.22 \pm 0.03) \times 10^{-8}$ LHCb
 - $\mathcal{B}r(B^+ \to \rho^0 \mu \mu) = (1.98 \pm 0.53) \text{x} 10^{-8} \text{ LHCb}$
- J/ψ veto and continuum rejection BDT
- Simultaneous 2D unbinned maximum likelihood fit in ΔE , M_{bc}
- Various peaking backgrounds across channels taken into account in fit

•
$$UL(B^+ \to \rho^+ e^+ e^-) = 46.7 \text{x} 10^{-8}$$

•
$$UL(B^+ \to \rho^+ \mu^+ \mu^-) = 38.1 \times 10^{-8}$$

[Phys. Rev. Lett. 133, 101804]

- World's best upper limits set for 10 decays
- First search for $B \to \{\omega, \rho\} l^+ l^-$
- Consistent with BFs measured in LHCb

Belle

$B^+ \to K^+ \nu \overline{\nu}$

• Theoretical prediction free of hadronic uncertainties, exact factorization:

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$

- Inclusive tag (ITA) selection:
 - BDT1 to reject vast majority of BB and continuum
 - BDT2 to select signal

• Difficult to measure – missing energy of 2 neutrinos – only possible to study at B-factories

- Hadronic tag (HTA) selection:
 - Tag side B reconstructed in hadronic channel via Full Event Interpretation (FEI)
 - BDTh to select signal

Studies of radiative and EWP penguin decays Belle/II. PPC 2024

Source	Correction	Uncertainty type, parameters	Uncertainty size	Impact on σ_{μ}
Normalization of $B\overline{B}$ background		Global, 2	50%	0.90
Normalization of continuum background		Global, 5	50%	0.10
Leading B -decay branching fractions		Shape, 6	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1	20%	0.49
p-wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1	30%	0.02
Branching fraction for $B \to D^{**}$, , ,	Shape, 1	50%	0.42
Branching fraction for $B^+ \to K^+ n\bar{n}$	q^2 dependent $O(100\%)$	Shape, 1	100%	0.20
Branching fraction for $D \to K^0_L X$	+30%	Shape, 1	10%	0.14
Continuum-background modeling, BDT _c	Multivariate $O(10\%)$	Shape, 1	100% of correction	0.01
Integrated luminosity		Global, 1	1%	< 0.01
Number of $B\overline{B}$		Global, 1	1.5%	0.02
Off-resonance sample normalization		Global, 1	5%	0.05
Track-finding efficiency		Shape, 1	0.3%	0.20
Signal-kaon PID	p, θ dependent $O(10-100\%)$	Shape, 7	O(1%)	0.07
Photon energy		Shape, 1	0.5%	0.08
Hadronic energy	-10%	Shape, 1	10%	0.37
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1	8.5%	0.22
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3	O(1%)	0.02
Global signal efficiency	, ,	Global, 1	3%	0.03
Simulated-sample size		Shape, 156	O(1%)	0.52

• Full table of systematics in ITA

$B^+ \to K^+ \nu \overline{\nu}$

- Sensitive to MC modelling of various background sources (both ITA and HTA)
 - Modelling of continuum
 - Data/MC agreement check in off-resonance a BDTc classifier trained to reshape distributions + a scaling factor
 - $B\overline{B}$ decays modelling
 - $B^+ \rightarrow K^+ K_L^0 K_L^0$ reweighted according to BaBar study
 - $B \rightarrow D \rightarrow K_L^0$ scaling for this type of events defined from pion-enriched data sample
 - Uncertainties of BFs of other B decays as a systematic uncertainty
- Signal efficiency verified using embedded sample (kaon candidate reconstructed from $B \rightarrow KJ/\psi$ decay in data and combined with ROE)

Belle II

- 2D binned maximum likelihood fit in bins of q^2 and efficiency quantiles $\eta = 1 \epsilon(BDT_2)$
- Combined fit result: $\mathcal{B}r(B^+ \to K^+ \nu \bar{\nu}) = (2.3 \pm 0.7) \times 10^{-5}$
- First evidence with 3.5σ significance and 2.7σ deviation from SM

[Phys. Rev. D 109, 112006]

- ITA fit result: $\mathcal{B}r(B^+ \to K^+ \nu \bar{\nu}) = (2.7 \pm 0.7) \times 10^{-5}$
- HTA fit result: $\mathcal{B}r(B^+ \to K^+ \nu \bar{\nu}) = (1.1^{+1.2}_{-1.0} \ 0.7) \times 10^{-5}$

•

•

Summary

- $B \rightarrow \gamma \gamma$ 5 times more restrictive limits than BaBar
- $\boldsymbol{B} \rightarrow \boldsymbol{\rho} \boldsymbol{\gamma}$ \mathcal{A}_I in agreement with SM
- $B \rightarrow dll$ most stringent limits, first search for several modes
- $B \rightarrow K \nu \overline{\nu}$ first evidence (3.5 σ) in Belle II, 2.7 σ away from SM

Thank you for attention!

 $B \to \rho \gamma$

TABLE II: Systematic uncertainties on the branching fractions for $B^+ \to \rho^+ \gamma \ (\mathcal{B}_{\rho^+ \gamma})$ and $B^0 \to \rho^0 \gamma \ (\mathcal{B}_{\rho^0 \gamma})$, and on the isospin and *CP* asymmetries.

Source	$\mathcal{B}_{ ho^+\gamma} imes 10^8$	$\mathcal{B}_{\rho^0\gamma}\times 10^8$	A_{I}	A_{CP}
Particle detection	4.1	1.3	1.4%	0.5%
Selection criteria	9.0	3.4	4.0%	0.5%
Fixed fit parameters	1.1	2.7	1.8%	0.2%
Signal shape	4.7	3.0	3.1%	0.5%
Histogram PDFs	1.0	0.6	0.5%	0.1%
Peaking $K^*\gamma$ bkg	3.4	5.4	3.1%	0.1%
Other peaking $B\overline{B}$ bkgs	2.2	0.8	0.9%	0.2%
Peaking $B\overline{B} A_{CP}$	0.1	< 0.1	0.1%	1.0%
Number of $B\overline{B}$'s	1.7	1.4	0.3%	0.1%
$ au_{B^{\pm}}/ au_{B^0}$	0.1	< 0.1	0.2%	< 0.1%
f_{+-}/f_{00}	4.0	3.6	3.8%	< 0.1%
Total	12.5	8.6	7.5%	1.4%

FIG. 1: Distributions of BDT_v for simulated data, for Belle (top) and Belle II (bottom). The solid red histograms are $B \to \rho\gamma$, the dotted blue histograms are $B \to \overline{D}\pi^+$ and the points are the $B \to \overline{D}\pi^+$ with $M(\pi\gamma_{\text{soft}})$ correction.

 B^0 $\rightarrow \gamma \gamma$

Source	Belle (events)	Belle II (events)	Combined (events)
Fit bias PDF parametrization	+0.14 +0.56 -0.48	+0.10 +0.28 -0.32	+0.12 +0.52 -0.44
Shape modeling	+0.06	+0.04	+0.05
Total (sum in quadrature)	$^{+0.58}_{-0.48}$	+0.30 -0.32	$^{+0.54}_{-0.44}$

Source	Belle (%)	Belle II (%)	Combined (%)
Photon detection efficiency	4.0	2.7	3.5
Simulation sample size	0.4	0.3	0.3
Number of $B\bar{B}$	1.3	1.5	1.0
f^{00}	2.5	2.5	2.5
$C_{\rm BDT}$ requirement	0.4	0.9	0.6
π^0/η veto	0.4	0.6	0.4
Timing requirement efficiency	2.8		2.7
Total (sum in quadrature)	5.7	4.1	5.2

TABLE II. Summary of multiplicative systematic uncertainties.

$b \rightarrow dl^+ l^-$

TABLE I. \mathcal{B}^{UL} for $b \to de^+e^-$, $b \to d\mu^+\mu^-$, and $b \to d\ell^+\ell^-$ decays. The columns correspond to decay channels, signal yields (N_{sig}) , 90% CL signal yield upper limits (N_{sig}^{UL}) , data-MC difference corrected signal MC efficiencies (ε) , branching fraction 90% CL upper limits (\mathcal{B}^{UL}) , previous branching fraction 90% CL upper limits (Previous \mathcal{B}^{UL}), branching fractions (\mathcal{B}) , and branching fraction theoretical predictions (Theory \mathcal{B}).

					Previous		Theory
Channel	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	$\epsilon(\%)$	$\mathcal{B}^{\mathrm{UL}}$ (10 ⁻⁸)	$\mathcal{B}^{\mathrm{UL}}$ (10 ⁻⁸)	\mathcal{B} (10 ⁻⁸)	${\cal B}~(10^{-8})$
$B^0 o \eta e^+ e^-$	$0.0^{+1.4}_{-1.0}$	3.1	3.9	< 10.5	< 10.8 [23]	$0.0^{+4.9}_{-3.4}\pm 0.1$	
$B^0 o \eta \mu^+ \mu^-$	$0.8^{+1.5}_{-1.1}$	4.2	5.9	< 9.4	< 11.2 [23]	$1.9^{+3.4}_{-2.5}\pm0.2$	
$B^0 o \eta \ell^+ \ell^-$	$0.5^{+1.0}_{-0.8}$	1.8	4.9	< 4.8	< 6.4 [23]	$1.3^{+2.8}_{-2.2}\pm0.1$	
$B^0 \to \omega e^+ e^-$	$-0.3^{+3.2}_{-2.5}$	3.7	1.6	< 30.7		$-2.1^{+26.5}_{-20.8}\pm0.2$	
$B^0 o \omega \mu^+ \mu^-$	$1.7^{+2.3}_{-1.6}$	5.5	2.9	< 24.9		$7.7^{+10.8}_{-7.5}\pm0.6$	
$B^0 ightarrow \omega \ell^+ \ell^-$	$1.0^{+1.8}_{-1.3}$	3.6	2.2	< 22.0		$6.4^{+10.7}_{-7.8}\pm0.5$	
$B^0 \to \pi^0 e^+ e^-$	$-2.9^{+1.8}_{-1.4}$	4.0	6.7	< 7.9	< 8.4 [23]	$-5.8^{+3.6}_{-2.8}\pm0.5$	
$B^0 o \pi^0 \mu^+ \mu^-$	$-0.5^{+3.6}_{-2.7}$	6.1	13.7	< 5.9	< 6.9 [23]	$-0.4^{+3.5}_{-2.6}\pm0.1$	
$B^0 \to \pi^0 \ell^+ \ell^-$	$-1.8^{+1.6}_{-1.1}$	2.9	10.2	< 3.8	< 5.3 [23]	$-2.3^{+2.1}_{-1.5}\pm0.2$	$0.91^{+0.34}_{-0.29}$ [22]
$B^+ \to \pi^+ e^+ e^-$	$0.1^{+2.5}_{-1.6}$	5.0	11.5	< 5.4	< 8.0 [24]	$0.1^{+2.7}_{-1.8}\pm 0.1$	1.96 ± 0.21 [21]
$B^0 \to \rho^0 e^+ e^-$	$5.6^{+3.5}_{-2.7}$	10.8	3.2	< 45.5		$23.6^{+14.6}_{-11.2}\pm1.1$	
$B^+ \to \rho^+ e^+ e^-$	$-4.4^{+2.3}_{-2.0}$	5.3	1.4	< 46.7		$-38.2^{+24.5}_{-17.2} \pm 3.4$	$4.20_{-0.78}^{+0.88}$ [21]
$B^+ ightarrow ho^+ \mu^+ \mu^-$	$3.0^{+4.0}_{-3.0}$	8.7	2.9	< 38.1		$13.0^{+17.5}_{-13.3}\pm1.1$	$4.03^{+0.83}_{-0.75}$ [21]
$B^+ \to \rho^+ \ell^+ \ell^-$	$0.4^{+2.3}_{-1.8}$	3.0	2.0	< 18.9		$2.5^{+14.6}_{-11.8}\pm0.2$	

Source	Correction	Uncertainty type, parameters	Uncertainty size	Impact on σ_{μ}
Normalization of $B\overline{B}$ background		Global, 1	30%	0.91
Normalization of continuum background		Global, 2	50%	0.58
Leading B -decay branching fractions		Shape, 3	O(1%)	0.10
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1	20%	0.20
Branching fraction for $B \to D^{**}$, , ,	Shape, 1	50%	< 0.01
Branching fraction for $B^+ \to K^+ n \bar{n}$	q^2 dependent $O(100\%)$	Shape, 1	100%	0.05
Branching fraction for $D \to K^0_{\rm L} X$	+30%	Shape, 1	10%	0.03
Continuum-background modeling, BDT _c	Multivariate $O(10\%)$	Shape, 1	100% of correction	0.29
Number of $B\overline{B}$		Global, 1	1.5%	0.07
Track finding efficiency		Global, 1	0.3%	0.01
Signal-kaon PID	p, θ dependent $O(10-100\%)$	Shape, 3	O(1%)	< 0.01
Extra-photon multiplicity	$n_{\gamma \text{extra}}$ dependent $O(20\%)$	Shape, 1	O(20%)	0.61
$K_{\rm L}^0$ efficiency		Shape, 1	17%	0.31
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3	O(1%)	0.06
Signal efficiency	• •	Shape, 6	16%	0.42
Simulated-sample size		Shape, 18	O(1%)	0.60

TABLE II. Sources of systematic uncertainty in the HTA (see caption of Table I for details).

FIG. 10. Distribution of $q_{\rm rec}^2$ in data (points with error bars) and simulation (filled histograms) divided into three groups (*B*-meson decays with and without subsequent $D \to K_{\rm L}^0 X$ decays, and the sum of the five continuum categories) for the pionenriched sample in the ITA. The left (right) panel shows pre(post)fit distributions. The data-to-simulation ratios are shown in the bottom panels.

FIG. 13. Distribution of invariant $K_{\rm S}^0 K_{\rm S}^0$ mass in backgroundsubtracted data (points with error bars) and signal simulation (filled histogram) for $B^+ \to K^+ K_{\rm S}^0 K_{\rm S}^0$ candidates. The simulated distribution is normalized to the number of $B\overline{B}$ events. The pull distribution is shown in the bottom panel.

FIG. 14. Distribution of the invariant mass of the $K^+K^$ pair from $B^0 \to K^0_{\rm S}K^+K^-$ decays in background-subtracted data (points with error bars) and the sum of the simulated $B^0 \to K^0_{\rm S}\phi(\to K^+K^-)$ decay (purple-filled histogram), the s-wave contribution estimated using $B^+ \to K^+K^0_{\rm S}K^0_{\rm S}$ decays in data (blue-filled histogram) and the simulated p-wave nonresonant component (red-filled histogram). The distribution obtained using $B^+ \to K^+K^0_{\rm S}K^0_{\rm S}$ decays in data is corrected for efficiency and the ratio of the B^+ and B^0 lifetimes. The simulated distributions are normalized to the number of $B\overline{B}$ events. The pull distribution is shown in the bottom panel.

$\overline{B^+} \to K^+ \nu \bar{\nu}$

FIG. 16. Twice the negative profile log-likelihood ratio as a function of the signal strength μ for the ITA, HTA, and the combined result. The value for each scan point is determined by fitting the data, where all parameters but μ are varied.