

Observation of double J/Y production in pPb collisions

Sunil Bansal Panjab University, India (for CMS Collaboration)

17th International Conference on Interconnections between Particle Physics and Cosmology

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

14 -18 October 2024, Hyderabad, India

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

- Introduction
- Dataset and Event Selection
- Signal Extraction
- Double J/Ψ Production Cross Section
- Extraction of DPS Contributions
 - $\hfill\square$ production cross section and effective cross section
- **J** Summary

Introduction

- MPI (multiple parton scattering) studies are important for
 - Probing partonic structure of proton
 - Tuning of Monte Carlo event generators
 - Background for new physics searches

- Sensitive to interplay between perturbative and non-perturbative QCD
- MPI cross section increases with \sqrt{s} ; increased parton densities
- DPS: two hard scatterings within the same collision
 - Many measurements from UA2 to LHC
 - Different processes and collision energies

Introduction

• DPS cross section can be written as

$$\sigma_{\rm DPS}^{hh' \to ab} = \frac{m}{2} \frac{\sigma_{\rm SPS}^{hh' \to a} \sigma_{\rm SPS}^{hh' \to b}}{\sigma_{\rm eff}}$$

- assumptions; PDFs factorization in the transverse and longitudinal components, no parton correlations i.e. double PDF can be expressed as as a product of single PDFs
- The $\sigma_{eff} \equiv (Interpretation transverse distance)^2$
 - Measurements: ~15 mb for jet, photon, W/Z and ~5 mb for quarkonia states.
 - MC predicts 20-30 mb \Rightarrow presence of correlations
- pPb data provide an independent tool to extract σ_{eff}
- DPS is enhanced by a factor of 600 in pPb collisions as compared to pp

 $\begin{array}{c} q_1 \\ q_2 \\ q_2 \\ \end{array}$

Studies with J/Ψ meson has advantage of higher production rate and clean signature with leptonic final state e.g. Triple $J/\Psi[\underline{link}], J/\Psi + D^0[\underline{link}]$

Dataset and Event Selection

- **D** pPb data sample collected at $\sqrt{s_{NN}} = 8.16$ TeV during 2016
 - Integrated luminosity: 174.56 nb⁻¹
- Channels considered
 - $\Box \quad J/\psi(\rightarrow \mu\mu)J/\psi(\rightarrow \mu\mu)$
 - $\Box \quad J/\psi(\rightarrow \mu\mu)J/\psi(\rightarrow ee)$
- ☐ 4 leptons with common vertex
- Soft Muons

for $0 < \eta < 0.3$
for $0.3 < \eta < 1.1$
for $1.1 < \eta < 2.1$
for 2.1 $< \eta <$ 2.4

- **□** Electrons with $p_T > 2.5$ GeV and $|\eta| < 2.5$
- □ **J/** Ψ mesons with p_T > 6.5 GeV and |y| < 2.4, decay length < 0.01 cm to reduce non-prompt contribution. Invariant mass: 2.6–3.6 GeV

Signal Extraction

- 2D unbinned extended ML fit
 Crystal ball function for signal: common mean and width from simulation
 - Exponential function for background
- Signal Yield
 - > $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow\mu\mu)$: 8.5 ± 3.4
 - > $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow ee)$: 5.7 ± 4.0
- Significance is 4.9 std. dev. for 4 muon channel: Likelihood ratio of the fits + asymptotic formula under Wilks theorem
- 5.3σ (combination with Fischer Formalism)

J/ψ(→μμ)J/ψ(→μμ)

CMS

Event Display

Double J/ Ψ Production Cross Section

• Measured, using $J/\psi(\rightarrow\mu\mu)J/\psi(\rightarrow\mu\mu)$ only, fiducial cross section as

$$\sigma(\text{pPb} \to J/\psi J/\psi + X) = N_{\text{sig}}/(\epsilon \mathcal{L}_{\text{int}} \mathcal{B}_{J/\psi \to \mu^+ \mu^-}^2)$$

- $N_{sig} = 8.5 \pm 3.4$
- Efficiency = 62.1% (same as squared efficiency of single $J/\psi(\rightarrow \mu\mu)$)
- B.R. (J/ψ(→μμ)) = 5.961%

 $\sigma(\mathrm{pPb} \rightarrow \mathrm{J}/\psi\mathrm{J}/\psi + \mathrm{X}) = 22.0 \pm 8.9\,\mathrm{(stat)} \pm 1.5\,\mathrm{(syst)}\,\mathrm{nb}$

- Systematic uncertainty is dominated by signal, background PDFs and luminosity
 - Signal with CB + Gaussian, background with first order polynomial

Source of uncertainty	$\sigma(\text{pPb} \rightarrow J/\psi J/\psi + X)$
J/ ψ meson signal shape	4.0%
Dimuon continuum background shape	2.5%
Luminosity	3.5%
Branching fraction	1.1%
Scale factors	1.3%
Total	6.1%

Measured cross section is DPS + SPS which needs to be separated for the measurement of the effective cross section

Extraction DPS Contributions (I/II)

- **D** Discriminating variables between DPS and SPS; Δy and $\Delta \phi$
 - Decorrelated J/ ψ pair in DPS: flat Δy and $\Delta \phi$
 - **Correlated J/ψ pair in SPS:** peaking Δy (~0) and $\Delta \phi$ (~0, π)

Extraction DPS Contributions (II/II)

- □ 1D fit of Δy variable in the DPS dominated region $\Delta y > 1.92$
 - A data driven DPS templated is constructed using two J/ψ from independent events
 - SPS template derived using simulated events

SPS: 16.5 ± 10.8 (stat) ± 0.1 (syst) nb DPS: 5.4 ± 6.2 (stat) ± 0.4 (syst) nb

These measurements can be used to measure the effective cross-section

Effective Cross Section

$\sigma_{_{eff,pA}}$ can be extracted using formula	Theoretical cross section with HELAC-ONIA
from theory	code + CT14nio proton PDF + reweighted EPPS16 lead nPDF
$\sigma_{\rm eff,pA} = \left(\frac{1}{2}\right) \frac{\sigma_{\rm SPS}^{\rm pPb \to J/\psi + X} \sigma_{\rm SPS}^{\rm pPb \to J/\psi + X}}{\rho_{\rm SPS}^{\rm pPb \to J/\psi + X}}$	$\sigma_{\text{SPS}}^{\text{pPb}\to\text{J/}\psi+X}\mathcal{B}(\text{J/}\psi\to\mu^+\mu^-) \qquad 4.51\pm0.42 \ \mu\text{b}$
$\sigma_{\rm DPS}^{\rm r}$ from data	$\sigma_{\text{SPS}}^{\text{prb}\to j/\psi j/\psi + \chi} \mathcal{B}^2(J/\psi \to \mu^+\mu^-) = 20.2^{+38.5}_{-13.1} \text{pb}$

$$\sigma_{
m eff,pA}=0.53^{+\infty}_{-0.2}\,
m b$$

large upper uncertainty indicates the possibility of the absence of DPS contribution

• Neglecting parton correlations, factorization of double PDF in transverse and longitudinal components; σ_{eff} (pp) can be calculated

$$\sigma_{\rm eff} = \frac{\sigma_{\rm eff,pA}}{A - \sigma_{\rm eff,pA} F_{\rm pA} / A}$$

A = 208, and $F_{pA} = 29.5 \text{ mb}^{-1}$ from Glauber MC Model

 $\sigma_{eff} = 4.0^{+\infty}_{-1.5}\,mb~~\rightarrow \sigma_{eff}^{}$ > 1.0 mb at 95% CL

Summary

First observation of double J/ψ production in pPb collisions at the energy of 8.16 TeV

 $\sigma(\text{pPb} \rightarrow \text{J}/\psi\text{J}/\psi + \text{X}) = 22.0 \pm 8.9 \,\text{(stat)} \pm 1.5 \,\text{(syst)} \,\text{nb}$

DPS cross section is measured to be:
 5.4 ± 6.2 (stat) ± 0.4 (syst) nb

With σ_{eff} > 1.0 mb @ 95% CL

Future pPb data will be useful in the measurement of effective cross section with better accuracy.

pPb $\rightarrow J/\psi + J/\psi$, $\sqrt{s_{NN}}$ =8.16 TeV,**CMS** (this work) $pp \rightarrow J/\psi + J/\psi + J/\psi$, $\sqrt{s}=13$ TeV, CMS Nat. Phys. 19 (2023) 338 pp \rightarrow J/ ψ +J/ ψ , Vs=7 TeV, CMS* Phys. Rept. 889 (2020) 1 pp $\rightarrow J/\psi + J/\psi$, $\sqrt{s} = 8$ TeV, ATLAS Eur. Phys. J. C 77 (2017) 76 $pp \rightarrow J/\psi + J/\psi$, $\sqrt{s} = 1.96 \text{ TeV}$, **D0** Phys. Rev. D 90 (2014) 111101 pp \rightarrow J/ ψ +Y, Vs=1.96 TeV, D0* Phys. Rev. Lett. 117 (2016) 062001 pp \rightarrow W+J/ ψ , Vs=7 TeV, ATLAS* Phys. Lett. B 781 (2018) 485 pp \rightarrow Z+J/ ψ , \sqrt{s} =8 TeV, ATLAS* Phys. Rept. 889 (2020) 1 pp \rightarrow Z+b \rightarrow J/ ψ , \sqrt{s} =8 TeV, **ATLAS*** Nucl. Phys. B 916 (2017) 132 pp $\rightarrow \gamma$ +b/c+2-jet, \sqrt{s} =1.96 TeV, **D0** Phys. Rev. D 89 (2014) 072006 pp $\rightarrow \gamma$ +3-jet, \sqrt{s} =1.96 TeV, **D0** Phys. Rev. D 89 (2014) 072006 pp \rightarrow 2- γ +2-jet, vs=1.96 TeV, **D0** Phys. Rev. D 93 (2016) 052008 pp $\rightarrow \gamma$ +3-jet, \sqrt{s} =1.96 TeV, **D0** Phys. Rev. D 81 (2010) 052012 pp $\rightarrow \gamma$ +3-jet, vs=1.8 TeV, CDF Phys. Rev. D 56 (1997) 3811 $pp \rightarrow 4$ -jet, $\sqrt{s}=640 \text{ GeV}, UA2$ Phys. Lett. B 268 (1991) 145 pp \rightarrow 4-jet, vs=1.8 TeV, CDF Phys. Rev. D 47 (1993) 4857 pp \rightarrow 4-jet, \sqrt{s} =7 TeV, ATLAS JHEP 11 (2016) 110 pp \rightarrow 4-jet, \sqrt{s} =7 TeV, CMS Eur. Phys. J. C 76 (2016) 148 pp \rightarrow 4-jet, \sqrt{s} =13 TeV, CMS JHEP 01 (2022) 177 pp \rightarrow W+2-jet, vs=7 TeV, CMS JHEP 03 (2014) 032 pp \rightarrow W+2-jet, \sqrt{s} =7 TeV, **ATLAS** New J. Phys. 15 (2013) 033038 pp \rightarrow WW, vs=13 TeV, CMS Phys. Rev. Lett. 131 (2023) 091803

