Theoretical Frameworl

k New Physics Co 0000

Constraints Me

Kinematics of $\bar{B}_S \to K^{*+} (\to K \odot \odot \odot \odot \odot$

Predictions 000000

Conclusion

New Physics effects in semileptonic $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decays

SHABANA KHAN

UNIVERSITY OF RAJASTHAN, JAIPUR, RAJASTHAN

October 15, 2024

In Collaboration with Dr. DINESH KUMAR

17th International Conference on Interconnections between Particle Physics and

Cosmology (PPC 2024)

SHABANA KHAN

New Physics effects in semileptonic $\bar{B_S} \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

October 15, 2024

イロト イポト イヨト イヨト

1 / 32

- **Theoretical Framework** 2
- New Physics Constraints 3

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decay

6 Predictions

э

- **2** Theoretical Framework
- 3 New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decay

6 Predictions

э

イロト イポト イヨト イヨト

Introduction Theoretical Framework New Physics Constraints Methodology Kir ○● ○○ ○○○ ○○○

Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l \det 00000$

Predictions C 000000 C

Introduction

The semileptonic decays are interesting avenue to look for the New Physics beyond the Standard Model.

- Several analysis with New Physics have performed which can explain the observed discrepancy. (Very recent arXiv 2405.06062)
- We analyzed the allowed New Physics constrained by the available $b \rightarrow u l v$ data.
- We aim to provide a comprehensive analysis of the $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays process, focusing particularly on its sensitivity to NP effects.

SHABANA KHAN

- **2** Theoretical Framework
- 3 New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decay

6 Predictions

э

イロト イポト イヨト イヨト

•• Effective Field Theory

The effective Hamiltonian for the transition governed by $b \rightarrow u l v$ is given by:

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ub} \left[(1 + C_{V_L}) O_{V_L} + C_{V_R} O_{V_R} + C_{S_L} O_{S_L} + C_{S_R} O_{S_R} + C_T O_T \right],$$

where the operators are:

Theoretical Framework

$$\begin{split} O_{V_L} &= (\bar{u}\gamma_{\mu}P_Lb)(\bar{l}\gamma^{\mu}P_Lv) \\ O_{V_R} &= (\bar{u}\gamma_{\mu}P_Rb)(\bar{l}\gamma^{\mu}P_Lv), \\ O_{S_R} &= (\bar{u}P_Rb)(\bar{l}P_Lv), \\ O_{S_L} &= (\bar{u}P_Lb)(\bar{l}P_Lv), \\ O_T &= (\bar{u}\sigma^{\mu\nu}P_Lb)(\bar{l}\sigma_{\mu\nu}P_Lv). \end{split}$$

We assume the lepton flavour universal NP couplings for light leptons (l = μ or e) : $C_i^l = (C_i^e + C_i^{\mu})$

SHABANA KHAN

New Physics effects in semileptonic $\bar{B_S} \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

October 15, 2024

• • • • • • •

- **2** Theoretical Framework
- **3** New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decay

6 Predictions

イロト イポト イヨト イヨト

э

We constraint the New Physics by the available $b \rightarrow u l v$ data :

- For the decay mode $\bar{B}^0 \to \pi^+ l^- \bar{\nu}$, we have utilized the globally averaged q^2 binned branching ratio spectrum published by the HFLAV collaboration.arXiv:2206.07501
- We use the world average of the differential branching fractions in different q^2 bins for the decay $B \rightarrow \rho \, l\nu$ published by the HFLAV collaboration.arXiv:2206.07501
- We use the world average of the differential branching fractions in different q^2 bins for the decay $B \rightarrow \omega l \nu$ published by the HFLAV collaboration.arXiv:2206.07501
- The measurement of leptonic decay $B \rightarrow \mu \nu$ from Belle is also used to constraint the NP parameters.arXiv:1911.03186

New Physics contribution in $B \rightarrow P l v$

New Physics Constraints

0000

The differential decay rate of semileptonic decay of $B \rightarrow P$ can be written in term of NP WCs as:

$$\begin{aligned} \frac{d\Gamma(B \to P \, l \, \nu) / dq^2}{d\Gamma(B \to P \, l \, \nu)^{SM} / dq^2} &= \left| 1 + C_{V_L}^l + C_{V_R}^l \right|^2 \left[\left(1 + \frac{m_l^2}{2q^2} \right) H_{V,0}^{s^2} + \frac{3}{2} \frac{m_l^2}{q^2} H_{V,t}^{s^2} \right] \\ &+ \frac{3}{2} |C_{S_L}^l + C_{S_R}^l|^2 H_S^{s^2} + 8 |C_T^l| (1 + \frac{2m_l^2}{q^2}) H_T^{s^2} \\ &+ 3 \, Re[(1 + C_{V_L}^l + C_{V_R}^l) (C_{S_L}^{l*} + C_{S_R}^{l*})] \frac{m_l}{\sqrt{q^2}} H_S^s H_{V,t}^s \\ &- 12 \, Re[(1 + C_{V_L}^l + C_{V_R}^l) C_T^{l*}] \frac{m_l}{\sqrt{q^2}} H_T^s H_{V,0}^s \end{aligned}$$

Hadronic matrix elements can be written in terms of Form Factors which have been determined by using combined LCSR + Lattice fit. [arXiv:1205.6245, 1911.03186]

SHABANA KHAN

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

New Physics contribution in $B \rightarrow V l v$

Similarly for $B \rightarrow V$ can be written in terms of NP WCs as :

New Physics Constraints

$$\begin{split} \frac{d\Gamma(B \to V \, l \nu) / dq^2}{d\Gamma(B \to V \, l \nu)^{SM} / dq^2} &= \left(|1 + C_{V_L}^l|^2 + |C_{V_R}^l|^2 \right) \Big[\Big(1 + \frac{m_l^2}{2q^2} \Big) (H_{V,+}^2 + H_{V,-}^2 + H_{V,0}^2) + \frac{3}{2} \frac{m_l^2}{q^2} H_{V,t}^2 \Big] \\ &- 2 \, Re \Big[(1 + C_{V_L}^l) C_{V_R}^{l*} \Big] \Big[\Big(1 + \frac{m_l^2}{2q^2} \Big) (H_{V,0}^2 + 2H_{V,+} H_{V,-}) + \frac{3}{2} \frac{m_l^2}{q^2} H_{V,t}^2 \Big] \\ &+ \frac{3}{2} |C_{S_R}^l - C_{S_L}^l|^2 H_S^2 + 8 |C_T^l| (1 + \frac{2m_l^2}{q^2}) (H_{T,+}^2 + H_{T,-}^2 + H_{T,0}^2) \\ &+ 3 \, Re [(1 - C_{V_R}^l + C_{V_L}^l) (C_{S_R}^{l*} - C_{S_L}^{l*}] \Big] \frac{m_l}{\sqrt{q^2}} H_{V,t} \\ &- 12 \, Re [(1 + C_{V_L}^l) C_T^{l*}] \frac{m_l}{\sqrt{q^2}} (H_{T,0} \, H_{V,0} + H_{T,+} \, H_{V,+} - H_{T,-} \, H_{V,-}) \\ &- 12 \, Re [C_{V_R}^l C_T^{l*}] \frac{m_l}{\sqrt{q^2}} (H_{T,0} \, H_{V,0} + H_{T,+} \, H_{V,+} - H_{T,-} \, H_{V,-}) \end{split}$$

э

イロト イポト イヨト イヨト

October 15, 2024

Introduction 00	Theoretical Framework	New Physics Constraints	Methodology ●0000	Kinematics of $\tilde{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay	Predictions 000000	Conclusion 000000

- **2** Theoretical Framework
- **3** New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay

6 Predictions

• We perform the χ^2 analysis to constraints the NP parameter space and use MINUIT for the χ^2 analysis.

The χ^2 in our analysis is defined as :

$$\chi^{2}(C_{i}) = \sum_{m,n} \left(O^{th}(C_{i}) - O^{exp} \right)_{m} C_{mn}^{-1} \left(O^{th}(C_{i}) - O^{exp} \right)_{n}$$

where C_{mn}^{-1} is the covariance matrix which includes both experimental and theoretical uncertainties. O^{exp} and O^{th} are the experimental measurement and theoretical predictions, respectively.

- We consider the NP in 1D and 2D scenarios. The best fit values for the NP parameters are obtained by minimizing the χ^2 .
- We also get the allowed parameter space of new physics Wilson coefficients for 2-D scenarios based on $\Delta \chi^2$ values. $(\Delta \chi^2 = \chi^2 \chi^2_{min})$

SHABANA KHAN

October 15, 2024

12 / 32

Best fit of 1D New Physics Scenario

Scenarios	best fit point	χ^2_{min}
SM	-	24.34
$S1: C_{V_L}$	-0.032(47)	23.87
$S2: C_{V_R}$	0.069(47)	22.31
$S3: C_{S_L}$	-0.003(4)	23.85
$S4: C_{S_R}$	0.003(4)	23.85
$S5:C_T$	0.005(49)	24.33
$S6: C_{V_L} = -C_{V_R}$	-0.093(54)	20.61

New Physics effects in semileptonic $\bar{B_S} \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

э.

Introduction 00	Theoretical Framework	New Physics Constraints	Methodology 000€0	Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay	Predictions 000000	Conclusio 000000

Best fit of 2D New Physics Scenario

Scenarios	best fit point	χ^2_{min}
	S7a: [-0.079(56), 0.115(62)]	20.21
87 · (Cu. Cu.)	S7b: [-0.892(60), 0.928(56)]	20.21
S_{ℓ} (C_{ℓ_L} , C_{ℓ_R})	S7c: [-1.122(63), -0.928(57)]	20.21
	S7d: [-1.934(58), -0.115(62)]	20.21
$S8:(C_{V_L},C_{S_L})$	[-0.038(48), -0.003(4)]	23.22
$S9: (C_{V_L}, C_{S_R})$	[-0.038(48), 0.004(4)]	23,21
$S10: (C_{V_L}, C_T)$	[-0.032(47), 0.006(57)]	23.85
$S11: (C_{V_R}, C_{S_L})$	[0.075(48), -0.004(4)]	21.44
$S12: (C_{V_R}, C_{S_R})$	[0.075(48), 0.004(4)]	21.46
$S13: (C_{V_R}, C_T)$	[0.068(48), 0.0007(50)]	22.31
$S14: (C_{S_L}, C_{S_R})$	[0.008(121), 0.011(120)]	23.85
$S15: (C_{S_L}, C_T)$	[-0.003(4), 0.005(49)]	23.85
$S16: (C_{S_R}, C_T)$	[0.003(4), 0.005(49)]	23.85
$S17: (C_{V_L} = -C_{V_R}, C_{S_L} = -C_{S_R})$	[-0.116(59), 0.015(2)]	18.84

æ

We plot the 1 σ and 2 σ contours in the 2-D WC's plane.

SHABANA KHAN

15/32

Introduction 00	Theoretical Framework	New Physics Constraints	Methodology 00000	Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay $\bullet 0000$	Predictions 000000	Conclusion 000000

- **2** Theoretical Framework
- 3 New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay

6 Predictions

3

Introduction Theoretical Framework New Physics Constraints Methodology $\underset{\circ \circ \circ \circ \circ}{\text{Kinematics of } \bar{B}_{s} \to K^{*+}(\to K\pi) l^{-} \bar{v}_{l} \text{ decay}$ Predictions Conclusion $\underset{\circ \circ \circ \circ \circ}{\text{Conclusion}}$

• In our work we provide comprehensive analysis of the $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay.

The four body decays distribution for $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay can be characterized by four kinematic variables : q^2 , θ_l , θ_{K^*} and ϕ .

SHABANA KHAN

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

October 15, 2024

Angular Distribution for $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decay

The four fold differential distribution for this decay is given by arXiv: 1212.2231:

$$\frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{l} d\cos\theta_{K^{*}} d\phi} = \frac{8\pi}{3} \Big[(J_{1s} + J_{2s} + J_{3}\cos 2\phi + J_{6s}\cos\theta_{l} + J_{9}\sin 2\phi) + (J_{1c} + J_{2c}) + (J_{4}\cos\phi + J_{5}\sin\theta_{l}\cos\phi + J_{7}\sin\theta_{l}\sin\phi + J_{8}\sin\phi)J_{6c}\cos\theta_{l} \Big]$$

Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay

Here $J_i(q^2)$ are the angular coefficient. These coefficients contains the form factors and are sensitive to different new physics.

October 15, 2024

18 / 32

• The angular coefficients can be written as:

$$\begin{split} J_{1s} &= \frac{3}{16} \Big[3 |\mathscr{A}_{\perp}^{L}|^{2} + 3 |\mathscr{A}_{\parallel}^{L}|^{2} + 16 |\mathscr{A}_{0\parallel}|^{2} + 16 |\mathscr{A}_{t\perp}|^{2} \Big] \\ J_{1c} &= \frac{3}{4} \Big[|\mathscr{A}_{0}^{L}|^{2} + 2 |\mathscr{A}_{t}^{L}|^{2} + 8 |\mathscr{A}_{\parallel\perp}|^{2} \Big] \\ J_{2s} &= \frac{3}{16} \Big[|\mathscr{A}_{\perp}^{L}|^{2} + |\mathscr{A}_{\parallel}^{L}|^{2} - 16 |\mathscr{A}_{0\parallel}|^{2} - 16 |\mathscr{A}_{t\perp}|^{2} \Big] \\ J_{2c} &= -\frac{3}{4} \Big[|\mathscr{A}_{0}^{L}|^{2} - 8 |\mathscr{A}_{\parallel\perp}|^{2} \Big] \\ J_{3} &= \frac{3}{8} \Big[|\mathscr{A}_{\perp}^{L}|^{2} - |\mathscr{A}_{\parallel}^{L}|^{2} + 16 |\mathscr{A}_{0\parallel}|^{2} - 16 |\mathscr{A}_{t\perp}|^{2} \Big] \\ J_{4} &= \frac{3}{4\sqrt{2}} \Big[|\mathscr{A}_{0}^{L}| |\mathscr{A}_{\parallel}^{L}|^{*} - 8\sqrt{2} |\mathscr{A}_{\parallel\perp}| |\mathscr{A}_{0\parallel}|^{*} \Big] \\ J_{5} &= \frac{3}{2\sqrt{2}} Re \Big[|\mathscr{A}_{0}^{L}| |\mathscr{A}_{\perp}^{L}| + 2\sqrt{2} |\mathscr{A}_{0\parallel}| ||\mathscr{A}_{t}^{L}|^{*} \Big] \end{split}$$

$$\begin{split} J_{6s} &= \frac{3}{2} Re \Big[|\mathscr{A}_{\parallel}^{L}| |\mathscr{A}_{\perp}^{L}|^{*} \\ J_{6c} &= -6 Re \Big[|\mathscr{A}_{\parallel \perp}| |\mathscr{A}_{t}^{L}|^{*} \Big] \\ J_{7} &= \frac{3}{2\sqrt{2}} Im \Big[|\mathscr{A}_{0}^{L}| |\mathscr{A}_{\parallel}^{L}|^{*} - 2\sqrt{2} |\mathscr{A}_{t\perp}| |\mathscr{A}_{t}^{L}|^{*} \Big] \\ J_{8} &= \frac{3}{4\sqrt{2}} Im \Big[|\mathscr{A}_{0}^{L}| |\mathscr{A}_{\perp}^{L}|^{*} \Big] \\ J_{9} &= \frac{3}{4} Im \Big[|\mathscr{A}_{\perp}^{L}| |\mathscr{A}_{\parallel}^{L}|^{*} \Big] \end{split}$$

Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay

SHABANA KHAN

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

ъ

Introduction Theoretical Framework New Physics Constraints Methodology \check{K} intermatics of $\bar{B}_5 \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay Predictions Conclusion 00000

The differential decay rate :

$$\frac{d\Gamma}{dq^2} = \left[2J_{1s} + J_{1c} - \frac{1}{3}\left(2J_{2s} + J_{2c}\right)\right]$$

The forward-backward asymmetry for lepton can be written in terms of the angular coefficients as :

$$A_{FB} = \frac{J_{6s} + \frac{1}{2}J_{6c}}{\left[2J_{1s} + J_{1c} - \frac{1}{3}\left(2J_{2s} + J_{2c}\right)\right]}$$

The Longitudenal Polarization of K^* meson can be written as :

$$F_L = \frac{J_{1c} - \frac{1}{3}J_{2c}}{J_{tot}} , J_{tot} = \frac{(2J_{1s} + J_{1c}) - (2J_{2s} + J_{2c})}{3}$$

SHABANA KHAN

New Physics effects in semileptonic $\bar{B_S} \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

October 15, 2024

- **2** Theoretical Framework
- 3 New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decay

6 Predictions

7 Conclusion

э

Introduction Theoretical Framework New Physics Constraints Methodology Kinematics of $\tilde{B}_S - K^{*+}(-K\pi)l^- \tilde{v}_l$ decay Predictions Conclusion

Predictions for the Differential Branching Fraction

- Scenarios S6,S7 and S17 show the deviation from SM in the Branching fraction.
- The four different cases in S7 scenario can not be distinguished based on the Branching fraction.

э

Predictions for the Forward-Backward Asymmetry

- In AFB S6,S7 and S17 show the deviation from SM.
- S7b and S7c Scenarios can be distinguish from S7a and S7d Scenarios.

SHABANA KHAN

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

October 15, 2024

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

3

Predictions for the Logitudnal Polarization of K^* meson

• Longitudinal polarization of K^* meson shows the similar kind of deviation as in Branching Fraction.

SHABANA KHAN

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

October 15, 2024

Prediction for the INTIGRATED ANGULAR OBSERVABLES

Normalized angular observables defined as :

$$ilde{J}_i = rac{\int_{q^2_{min}}^{q^2_{max}} J_i(q^2) dq^2}{\int_{q^2_{min}}^{q^2_{max}} rac{d\Gamma}{dq^2} dq^2}$$

Scenario	\tilde{J}_{1s}	\tilde{J}_{1c}	\tilde{J}_{2s}	\tilde{J}_{2c}	$ ilde{J}_3$	$ ilde{J}_4$	\tilde{J}_5	\tilde{J}_{6s}
SM	0.255(35)	0.409(47)	0.085(12)	-0.409(47)	-0.059(23)	0.194(7)	-0.283(23)	-0.311(40)
S1	0.247(36)	0.420(48)	0.082(12)	-0.420(48)	-0.071(23)	0.199(7)	-0.266(22)	-0.286(38)
S2	0.258(37)	0.405(49)	0.086(12)	-0.405(49)	-0.055(26)	0.192(10)	-0.292(30)	-0.314(45)
S3	0.247(36)	0.420(48)	0.082(12)	-0.420(48)	-0.071(23)	0.199(7)	-0.266(22)	-0.286(38)
S4	0.247(36)	0.420(48)	0.082(12)	-0.420(48)	-0.071(23)	0.199(7)	-0.266(22)	-0.286(38)
<i>S</i> 5	0.247(36)	0.420(48)	0.082(13)	-0.420(49)	-0.070(23)	0.199(11)	-0.266(23)	-0.286(38)
<i>S</i> 6	0.267(38)	0.395(50)	0.089(13)	-0.395(50)	-0.043(30)	0.187(12)	-0.308(34)	-0.331(49)

25 / 32

Predictions

odu	ction Theo 00	oretical Framework	New Physic 0000	cs Constraints	Methodology 00000	Kinematics of Ē 00000	$B_S \to K^{*+} (\to K\pi) h$	¯ν _l decay	Predictions 00000●	Concl 0000
	Scenario	\tilde{J}_{1s}	<i>J</i> _{1c}	\tilde{J}_{2s}	\tilde{J}_{2c}	\tilde{J}_3	\tilde{J}_4	Ĩ5	\tilde{J}_{6s}	
	S7a	0.270(38)	0.390(51)	0.090(13)	-0.390(51)	-0.039(31)	0.185(12)	-0.314(35)	-0.338(50	0)
	S7b	0.270(39)	0.390(51)	0.090(13)	-0.390(52)	-0.039(33)	0.185(13)	0.313(38)	-0.337(52	2)
	S7c	0.272(39)	0.387(52)	0.091(13)	-0.387(52)	-0.035(34)	0.184(14)	0.318(38)	0.342(52	2)
	S7d	0.270(38)	0.390(52)	0.090(13)	-0.390(52)	-0.039(33)	0.185(14)	-0.313(38)	-0.337(52	2)
	S8	0.247(36)	0.420(48)	0.082(12)	-0.420(48)	-0.071(23)	0.199(07)	-0.266(22)	-0.286(38	B)
	S9	0.247(36)	0.420(48)	0.082(12)	-0.420(48)	-0.071(23)	0.199(07)	-0.266(22)	-0.286(38	8)
	S10	0.248(36)	0.419(48)	0.081(15)	-0.418(51)	-0.070(23)	0.198(16)	-0.265(23)	-0.285(38	B)
	S11	0.260(37)	0.404(49)	0.087(12)	-0.404(47)	-0.053(27)	0.191(10)	-0.294(30)	-0.317(45	5)
	S12	0.260(37)	0.404(49)	0.087(12)	-0.404(47)	-0.053(27)	0.191(10)	-0.294(30)	-0.317(45	5)
	<i>S</i> 13	0.258(36)	0.405(49)	0.086(12)	-0.405(49)	-0.055(26)	0.192(10)	-0.292(30)	-0.314(45	5)
	S14	0.247(36)	0.420(48)	0.082(12)	-0.420(48)	-0.071(23)	0.199(07)	-0.266(22)	-0.286(38	B)
	<i>S</i> 15	0.247(36)	0.420(48)	0.082(13)	-0.419(49)	-0.070(23)	0.199(11)	-0.266(23)	-0.286(38	B)
	S16	0.247(36)	0.420(48)	0.081(13)	-0.419(49)	-0.070(23)	0.199(11)	-0.267(23)	-0.286(38	B)
	<i>S</i> 17	0.273(39)	0.386(52)	0.091(13)	-0.385(52)	-0.033(34)	0.183(14)	-0.329(37)	-0.344(52	2)

32

Introduction 00	Theoretical Framework	New Physics Constraints	Methodology 00000	Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay	Predictions 000000	Conclusion •00000

- **2** Theoretical Framework
- **3** New Physics Constraints

4 Methodology

5 Kinematics of $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay

6 Predictions

- We investigated the New Physics in the semileptonic decay $\bar{B}_s \to K^{*+}(\to K\pi) l^- \bar{\nu}_l$ induced by the quark level transition $b \to u l \nu$.
- We considered the most general effective Hamiltonian with the different possible Lorentz structures.
- The different NP wilson coefficients are constrainted by the available measurements of branching ratios of $\bar{B}^0 \to \pi^+ l^- \bar{\nu}$, $B \to \rho l\nu$, $B \to \omega l\nu$ and $B \to \mu \nu$ decays.
- We investigated the NP effects in $\bar{B}_s \to K^{*+} (\to K\pi) l^- \bar{v}_l$ by predicting the q^2 spectrum of Branching Ratio, Forward-Backward asymmetry and polarization fraction of K^* meson F_L . And also provide predictions for the Integrated Angular Observables.

э.

Conclusion 000000

Thank you for listening!

SHABANA KHAN

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

< 一型 October 15, 2024

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Introduction 00	Theoretical Framework	New Physics Constraints	Methodology 00000	Kinematics of $\tilde{B}_S \to K^{*+} (\to K\pi) l^- \tilde{v}_l$ decay 00000	Predictions 000000	Conclusion 000●00
Append	ix					

The hadronic matrix elements for $B_s \to K^*$ can be written in terms of seven form factors namely $V, A_0, A_1, A_{12}, T_1, T_2$ and T_{23} . The form factors are defined by simplified series expansion in *z* given by Bharucha-Straub-Zwicky as

$$f_i(q^2) = \frac{1}{(1-q^2/m_{R_i}^2)} \sum_k \alpha_k^i [z(q^2) - z(0)]^k, \qquad \text{Where } z(t) = \frac{\sqrt{t_t - t} - \sqrt{t_t - t_0}}{\sqrt{t_t - t} + \sqrt{t_t - t_0}}$$

with $t_{\pm} = (m_{B_s} \pm m_{K^*})$ and $t_0 = (m_{B_s} + m_{K^*})(\sqrt{m_{B_s}} - \sqrt{m_{K^*}})^2$.

f_i	J^P	$m_{R,i}/GeV$
A_0	0^{-}	5.279
<i>V</i> , <i>T</i> ₁	1-	5.325
A_1, T_2, A_{12}, T_{23}	1+	5.724

 Table 1: Masses of resonances required for form factor

 parameterizations

f_i	α_0^i	α_1^i	α_2^i
V	0.28 ± 0.02	-0.82 ± 0.19	5.08 ± 1.42
A_0	0.36 ± 0.02	-0.36 ± 0.20	8.03 ± 2.07
A_1	0.22 ± 0.01	0.24 ± 0.16	1.77 ± 0.85
A_{12}	0.27 ± 0.02	1.12 ± 0.11	3.43 ± 0.78
T_1	0.24 ± 0.01	-0.75 ± 0.15	2.49 ± 1.37
T_2	0.24 ± 0.01	0.31 ± 0.15	1.58 ± 0.93
T_{23}	0.60 ± 0.04	2.40 ± 0.27	9.64 ± 2.03

Table 2: Simplified series expansion coefficients α_k^i for parameterising the $B_s \to K^*$ form factors using the combined LCSR + Lattice fit $\Box \to \Box = \Box \to \Box = \Box$

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decays

30 / 32

The form factors for vector currents, axial vector currents and tensor currents in the helicity basis can be written as :

Vector current

$$\mathscr{F}_{\perp}(q^2) = \frac{\sqrt{2\lambda}}{M_{B_s}(M_{B_s} + M_{K^*})} V(q^2)$$

· Axial vector current

$$\begin{aligned} \mathscr{F}_{l}(q^{2}) &= \frac{\sqrt{\lambda}}{M_{B_{s}}^{2}} A_{0}(q^{2}) \\ \mathscr{F}_{\parallel}(q^{2}) &= \sqrt{2} \frac{M_{B_{s}} + M_{K^{*}}}{M_{B_{s}}} A_{1}(q^{2}) \\ \mathscr{F}_{0}(q^{2}) &= \frac{8M_{K^{*}} A_{12}(q^{2})}{M_{B_{s}}} \end{aligned}$$

Tensor current

$$\begin{aligned} \mathscr{F}_{\perp}^{T}(q^{2}) &= \frac{\sqrt{2\lambda}}{M_{B_{s}}^{2}} T_{1}(q^{2}) \\ \mathscr{F}_{\parallel}^{T}(q^{2}) &= \frac{\sqrt{2}(M_{B_{s}}^{2} - M_{K^{*}}^{2})}{M_{B_{s}}^{2}} T_{2}(q^{2}) \\ \mathscr{F}_{0}^{T}(q^{2}) &= \frac{4M_{K^{*}} T_{23}(q^{2})}{M_{B_{s}} + M_{K^{*}}} \end{aligned}$$

New Physics effects in semileptonic $\bar{B_S} \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decays

ъ

Introduction	Theoretical Framework	New Physics Constraints	Methodology	Kinematics of $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{v}_l$ decay	Predictions	Conclusion
00		0000	00000	00000	000000	00000●
Append	ix					

The contribution from helicity amplitudes can be given as

$$\begin{split} \mathscr{A}_{0}^{L} &= -4 \frac{M_{B_{s}}^{2}(1 + C_{VL} - C_{VR})\mathscr{F}_{0}(q^{2})}{\sqrt{q^{2}}} \\ \mathscr{A}_{\perp}^{L} &= 4M_{B_{s}}(1 + C_{VL} + C_{VR})\mathscr{F}_{\perp}(q^{2}) \\ \mathscr{A}_{\parallel}^{L} &= -4M_{B_{s}}(1 + C_{VL} - C_{VR})\mathscr{F}_{\parallel}(q^{2}) \\ \mathscr{A}_{t}^{L} &= -4\left[\frac{m_{l}M_{B_{s}}^{2}}{\sqrt{q^{2}}}(1 + C_{VL} - C_{VR}) + \frac{M_{B_{s}}^{2}}{m_{b}}(C_{SL} - C_{SR})\right]\mathscr{F}_{t}(q^{2}) \\ \mathscr{A}_{\parallel \perp} &= +8M_{B_{s}}C_{T}\mathscr{F}_{0}^{T}(q^{2}) \\ \mathscr{A}_{l\perp} &= 4\sqrt{2}\frac{M_{B_{s}}^{2}}{\sqrt{q^{2}}}C_{T}\mathscr{F}_{\perp}^{T}(q^{2}) \\ \mathscr{A}_{0\parallel} &= 4\sqrt{2}\frac{M_{B_{s}}^{2}}{\sqrt{q^{2}}}C_{T}\mathscr{F}_{\parallel}^{T}(q^{2}) \end{split}$$

New Physics effects in semileptonic $\bar{B}_S \to K^{*+} (\to K\pi) l^- \bar{\nu}_l$ decays

ъ