Vishnu Padmanabhan Kovilakam

Institute of Theoretical Physics, University of Münster

Particle Physics and Cosmology, Hyderabad, India, October 16, 2024

Collaboration with Sudip Jana, Michael Klasen, and Luca Paolo Wiggering arXiv: 2406.18641

institut für theoretische physik

Neutrino Masses and Mixings from Milli-charged Dark Matter

Introduction

Neutrino masses and mixings

Neutrino oscillation data show:

- Neutrinos have tiny, but non-zero masses
- Direct evidence for physics beyond the SM

- Data show:
	-
	- No suitable candidate within the SM

Dark matter

Dark matter constitutes 27% of energy budget of Universe

 ϕ

 ℓ_L

Neutrino mass is generated radiatively by dark sector particles:

Requires a new symmetry to stabilize dark matter

$$
N_{1,2} \sim (1,1; -)
$$

$$
\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \sim (1,2,\frac{1}{2}; -)
$$

Z. Tao (1996) E. Ma (2006)

 ℓ_I

Neutrino mass is generated radiatively by dark sector particles:

Requires a new symmetry to stabilize dark matter

$$
N_{1,2} \sim (1,1; -)
$$

$$
\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \sim (1,2,\frac{1}{2}; -)
$$

Z. Tao (1996) E. Ma (2006)

Can the SM gauge symmetry alone stabilize dark matter within the scotogenic setup?

- Dark matter stability: ensured by an accidental symmetry M. Cerilli, N. Fornengo, A. Strumia (2006) M. Cerilli, A. Strumia (2009)
- But: typically requires imposition of an approximate symmetry; requires large no.of multiplets Y. Cai, X.-G. He, M. Ramsey-Musolf and L.-H. Tsai (2011)
- Higher dimensional terms could leads to dark matter decay

Z. Tao (1996) E. Ma (2006)

H **igher representations of** $SU(2)_L$ **symmetry**

Requires a new symmetry to stabilize dark matter

- K. Kumericki, I. Picek and B. Radovcic (2012)
- A. Ahriche, K. L. McDonald, S. Nasri and T. Toma (2015)
- Y. Cai and M. A. Schmidt (2016)

Z. Tao (1996) E. Ma (2006)

- Dark matter stability: ensured by electromagnetic gauge symmetry
- Stablility is protected upto all orders in the EFT expansion
- Model content: more minimal

Higher representations of $SU(2)_L$ **symmetry**

- Dark matter stability: ensured by an accidental symmetry M. Cerilli, N. Fornengo, A. Strumia (2006) M. Cerilli, A. Strumia (2009)
- But: typically requires imposition of an approximate symmetry; requires large no.of multiplets Cai, X.-G. He, M. Ramsey-Musolf and L.-H. Tsai (2011). K. Kumericki, I. Picek and B. Radovcic (2012)
- Higher dimensional terms could leads to dark matter decay

Milli-charged dark matter

- hriche, K. L. McDonald, S. Nasri and T. Toma (2015)
- Y. Cai and M. A. Schmidt (2016)

Requires a new symmetry to stabilize dark matter

Neutrino mass from milli-charged dark matter

Neutrino mass is generated at one-loop level:

- The lightest milli-charged particle is stable, can be a viable candidate for dark matter
- To be consistent with various constraints, $\epsilon \ll 1$ (wait for next slide)
- Electric charge dequantization! Charge is not quantized in the SM: may be a hint!

$$
F \sim (1,1,\epsilon)
$$

\n
$$
\phi_1 = \begin{pmatrix} \phi_1^{1+\epsilon} \\ \phi_1^{\epsilon} \end{pmatrix} \sim (1,2,\frac{1}{2}+\epsilon)
$$

\n
$$
\phi_2 = \begin{pmatrix} \phi_2^{1-\epsilon} \\ \phi_2^{-\epsilon} \end{pmatrix} \sim (1,2,\frac{1}{2}-\epsilon)
$$

R. Foot (1991) R. Foot, G. C. Joshi, H. Lew, and R. R. Volkas (1990)

Status of milli-charged dark matter searches

- *DM can scatter off the nuclei at tree level via photon exchange*
- *The null results from these expts constraints the charge of the DM*

DM direct detection expts.

- *Milli-charged DM can be produced via the Drell-Yan process or via the decay of various mesons*
- *The null results from these searches constraints the parameter space*

- *Milli-charged DM can have sizeable self-interactions*
- *Such interactions are constrained from bullet cluster and elliptical glaxy*

DM self -interactions

- *Milli-charged DM can couple tightly with photon-baryon plasma even at the low temperature*
- *Such coupling during recombination era could affect CMB observables significantly*

CMB data

Freeze-in scenario

particles

7

Freeze-in scenario

particles

Freeze-in scenario is incompatoble with neutrino mass $\Gamma(\phi \to F\ell) \lesssim H$ | $T \simeq m_\phi$ \Longrightarrow $|Y_{1,2}|$ $\lesssim 10^{-8}$ $\overline{m_{\phi_{1,2}}}$ 100 GeV $M^{}_\nu \simeq$ 10^{-9} eV ($\rm m_F^{}$ $\overline{1 \text{GeV}}$) sin 2*θ* $\frac{120}{1}$) $m_{S_{1,2}} \sim \mathcal{O}(100) \text{GeV},$ 10^{-11} eV ($m_{\overline{\mathrm{F}}}$ $\overline{1 \text{GeV}}$) *λ*H*ϕ*1*ϕ*² $\frac{1}{2} \int m_{S_{1,2}} \thicksim \mathcal{O}(100) \text{TeV},$

mechanism

Gauge portal: dominant contribution to annihilation cross section via

abundance, which is excluded by various constraints;

Freeze-out scenario

Gauge portal: dominant contribution to annihilation cross section via

- abudance, which is excluded by various constraints;
- relic abudance

■ Leptonic portal: both DM annihilation and coannihilation processes play crucial roles in reproducing correct

Light thermal dark matter

*m*2

$$
\langle \sigma v \rangle \simeq \frac{m_{\text{DM}}^2 g^4}{M^4}, m_{\text{DM}} = 100 \,\text{MeV} \,\bigg\}
$$

Scalars $\{\phi_1^{\epsilon}, \phi_2^{\epsilon}\}$ can be a viable light mediator (only one can be light!): neutrinophilic dark matter

Requires a light mediator state for generating sufficently large contribution to annihilation cross section 100 GeV mediator $g = 1$ 100 MeV mediator $g = 10^{-3}$

Can be probed in various next generation neutrino telescopes

J. Herms, S. Jana, VPK, and S. Saad (2023)

Relic abundance: NH and IH

-
-

■ For larger DM masses, sizeable values of Yukawa couplings are required to be consistent with relic density constraint

Example 1 Large values of Yukawa couplings are excluded by cLFV constraints: $m_{DM} > 0.8$ GeV (NH) and $m_{DM} > 0.5$ GeV (IH)

Heavy thermal dark matter

- constraints
- \blacksquare However, the coannihilations with the new scalars are less severely constrained by these constraints

Coannihilation Partner: *S^ϵ*

■ For larger DM masses, DM annihilation into SM leptons via the *t*- channel processes is excluded through the cLFV

 $\frac{1}{1}$ **Coannihilation Partner:** S_1^{ϵ}

11

Heavy thermal dark matter

- constraints
- \blacksquare However, the coannihilations with the new scalars are less severely constrained by these constraints

Coannihilation Partner: $\phi_1^{1+\epsilon}$

■ For larger DM masses, DM annihilation into SM leptons via the *t*-channel processes is excluded through the cLFV

A radiative neutrino mass model is presented, in which the particles within the loop carry small electric

Unlike the conventional scotogenic setup, this scheme doesn't require imposition of any new symmetry

- charges
- to stabilize the dark matter candidate
- The proposed model could accommodate both light and heavy thermal dark matter scenarios
- The parameter space of the model can be probed in:
	- Various searches of milli-charged particles
	- Neutrino telescopes

Testable lepton flavor violating signals

Next generation *oνββ* decay experiments

Thank you for your attention!

Image credit:quanta magazine

Loop enhanced neutrinoless double beta decay

Enhanced contribution to : energy scale of neutrino self energy is similar order of momentum transfer of the *mββ oνββ* process

Light Mediator Constraints

Z-decay width measurements: \blacktriangleright

 \Box Z → S^{*}₁S₁: Γ_z ∝ cos² 2θ \Longrightarrow Choosing θ $\simeq \frac{\pi}{4}$

 \Box $Z \rightarrow S_1 S_2$: lower bound on mass of $S_2 : m_{S_2} > 90$ GeV

W-decay measurements and LEP constraints::

⊔

Electroweak precision observables:

> To be consistent with other constraints, choose we mass hierarchy of the form $m_{S_1} \ll m_{S_2} = m_{\phi_1^+} = m_{\phi_2^+}$

a T-parameter: $T = \frac{\cos^2 2\theta F (m_{S_1}^2, m_1)}{2\pi^2}$

Lower bound on mass of charged scalars: $m_{\phi_{12}^+} > 100$ GeV

$$
\frac{u_{S_2}^2}{v^2}
$$
 \Longrightarrow suppressed for $\theta \approx \frac{\pi}{4}$

Light Mediator Other constraints: Higgs observables

Invisible decay of Higgs: \blacktriangleright

> SM Higgs $h \to S_1^*S_1$ \Box

 $\Box V \supset \frac{v}{2} (\lambda_{H\phi_1} + \lambda_{H\phi_2} + \lambda'_{H\phi_1} + \lambda'_{H\phi_2})$

 $\Rightarrow \lambda_{H\phi_1} + \lambda_{H\phi_2} \simeq 2\lambda_{H\phi_1\phi_2} -$

 \triangleright h \rightarrow y.

 $V = \lambda_{H\phi_1} v(h\phi_1^+ \phi_1^-) + \lambda_{H\phi_2} v(h\phi_2^+ \phi_2^-)$: \Box

Modify the Higgs signal strengt

$$
{2} - 2\lambda{H\phi_{1}\phi_{2}})h(S_{1}^{*}S_{1})
$$

$$
(\lambda'_{H\phi_{1}} + \lambda'_{H\phi_{2}}) \propto \frac{2m_{\phi^{\pm}}^{2}}{v^{2}}
$$

th into
$$
\gamma \gamma: R_{\gamma \gamma} = \frac{Br(h \rightarrow \gamma \gamma)}{Br(h \rightarrow \gamma \gamma)_{\text{SM}}} \Rightarrow R_{\gamma \gamma} \approx 0.8
$$