Neutrino Masses and Mixings from Milli-charged Dark Matter

Vishnu Padmanabhan Kovilakam

Institute of Theoretical Physics, University of Münster

Particle Physics and Cosmology, Hyderabad, India, October 16, 2024

Collaboration with Sudip Jana, Michael Klasen, and Luca Paolo Wiggering arXiv: 2406.18641

institut für theoretische physik

Introduction

Neutrino masses and mixings

Neutrino oscillation data show:

- Neutrinos have tiny, but non-zero masses
- Direct evidence for physics beyond the SM

Dark matter

- Data show:
 - Dark matter constitutes 27% of energy budget of Universe
 - No suitable candidate within the SM

 ϕ

 ℓ_L

Neutrino mass is generated radiatively by dark sector particles:

$$N_{1,2} \sim (1,1; -)$$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \sim (1,2,\frac{1}{2}; -)$$

Requires a new symmetry to stabilize dark matter

Z. Tao (1996) E. Ma (2006)

 ℓ_I

Neutrino mass is generated radiatively by dark sector particles:

$$N_{1,2} \sim (1,1; -)$$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \sim (1,2,\frac{1}{2}; -)$$

Can the SM gauge symmetry alone stabilize dark matter within the scotogenic setup?

Requires a new symmetry to stabilize dark matter

Z. Tao (1996) E. Ma (2006)

Higher representations of $SU(2)_L$ symmetry

- Dark matter stability: ensured by an accidental symmetry M. Cerilli, N. Fornengo, A. Strumia (2006) M. Cerilli, A. Strumia (2009)
- But: typically requires imposition of an approximate symmetry; requires large no.of multiplets Cai, X.-G. He, M. Ramsey-Musolf and L.-H. Tsai (2011) K. Kumericki, I. Picek and B. Radovcic (2012) hriche, K. L. McDonald, S. Nasri and T. Toma (2015)
- Higher dimensional terms could leads to dark matter decay

Requires a new symmetry to stabilize dark matter

Z. Tao (1996) E. Ma (2006)

Y. Cai and M. A. Schmidt (2016)

Higher representations of $SU(2)_L$ symmetry

- Dark matter stability: ensured by an accidental symmetry M. Cerilli, N. Fornengo, A. Strumia (2006) M. Cerilli, A. Strumia (2009)
- But: typically requires imposition of an approximate symmetry; requires large no.of multiplets Cai, X.-G. He, M. Ramsey-Musolf and L.-H. Tsai (2011)
- Higher dimensional terms could leads to dark matter decay

Milli-charged dark matter

- Dark matter stability: ensured by electromagnetic gauge symmetry
- Stablility is protected upto all orders in the EFT expansion
- Model content: more minimal

Requires a new symmetry to stabilize dark matter

Z. Tao (1996) E. Ma (2006)

- hriche, K. L. McDonald, S. Nasri and T. Toma (2015)
- Y. Cai and M. A. Schmidt (2016)

Neutrino mass from milli-charged dark matter

Neutrino mass is generated at one-loop level:

- The lightest milli-charged particle is stable, can be a viable candidate for dark matter
- To be consistent with various constraints, $\epsilon \ll 1$ (wait for next slide)
- Electric charge dequantization! Charge is not quantized in the SM: may be a hint!

$$F \sim (1, 1, \epsilon)$$

$$\phi_1 = \begin{pmatrix} \phi_1^{1+\epsilon} \\ \phi_1^{\epsilon} \end{pmatrix} \sim (1, 2, \frac{1}{2} + \epsilon)$$

$$\phi_2 = \begin{pmatrix} \phi_2^{1-\epsilon} \\ \phi_2^{-\epsilon} \end{pmatrix} \sim (1, 2, \frac{1}{2} - \epsilon)$$

R. Foot (1991) R. Foot, G. C. Joshi, H. Lew, and R. R. Volkas (1990)

Status of milli-charged dark matter searches

DM direct detection expts.

- DM can scatter off the nuclei at tree level via photon exchange
- The null results from these expts constraints the charge of the DM

- Milli-charged DM can be produced via the Drell-Yan process or via the decay of various mesons
- The null results from these searches constraints the parameter space

DM self -interactions

- Milli-charged DM can have sizeable self-interactions
- Such interactions are constrained from bullet cluster and elliptical glaxy

CMB data

- Milli-charged DM can couple tightly with photon-baryon plasma even at the low temperature
- Such coupling during recombination era could affect CMB observables significantly

Freeze-in scenario

particles

Freeze-in scenario

particles

 $\Gamma(\phi \to F\ell) \lesssim H|_{T \simeq m_{\phi}} \Longrightarrow |Y_{1,2}| \lesssim 10^{-8} \sqrt{\frac{m_{\phi_{1,2}}}{100 \,\text{GeV}}}$ $M_{\nu} \simeq \begin{cases} 10^{-9} \text{eV}\left(\frac{\text{m}_{\text{F}}}{1 \text{GeV}}\right) \left(\frac{\sin 2\theta}{1}\right) & m_{S_{1,2}} \sim \mathcal{O}(100) \text{GeV}, \\ \\ 10^{-11} \text{eV}\left(\frac{\text{m}_{\text{F}}}{1 \text{GeV}}\right) \left(\frac{\lambda_{\text{H}\phi_{1}\phi_{2}}}{2}\right) m_{S_{1,2}} \sim \mathcal{O}(100) \text{TeV}, \end{cases}$ Freeze-in scenario is incompatoble with neutrino mass

mechanism

• Gauge portal: dominant contribution to annihilation cross section via

abundance, which is excluded by various constraints;

• Gauge portal: dominant contribution to annihilation cross section via

- abudance, which is excluded by various constraints;
- relic abudance

Light thermal dark matter

• Scalars $\{\phi_1^{\epsilon}, \phi_2^{\epsilon}\}$ can be a viable light mediator (only one can be light!): neutrinophilic dark matter

Requires a light mediator state for generating sufficiently large contribution to annihilation cross section $\langle \sigma v \rangle \simeq \frac{m_{\rm DM}^2 g^4}{M^4}, m_{\rm DM} = 100 \,\text{MeV} \begin{cases} 100 \,\text{GeV mediator } g = 1\\ 100 \,\text{MeV mediator } g = 10^{-3} \end{cases}$

J. Herms, S. Jana, VPK, and S. Saad (2023)

Can be probed in various next generation neutrino telescopes

Relic abundance: NH and IH

Normal Hierarchy

• For larger DM masses, sizeable values of Yukawa couplings are required to be consistent with relic density constraint

• Large values of Yukawa couplings are excluded by cLFV constraints: $m_{DM} > 0.8 \text{ GeV}$ (NH) and $m_{DM} > 0.5 \text{ GeV}$ (IH)

Heavy thermal dark matter

- constraints
- However, the coannihilations with the new scalars are less severely constrained by these constraints

Coannihilation Partner: S_1^{ϵ}

• For larger DM masses, DM annihilation into SM leptons via the t- channel processes is excluded through the cLFV

Coannihilation Partner: S_1^{ϵ}

Heavy thermal dark matter

- constraints
- However, the coannihilations with the new scalars are less severely constrained by these constraints

Coannihilation Partner: $\phi_1^{1+\epsilon}$

• For larger DM masses, DM annihilation into SM leptons via the t- channel processes is excluded through the cLFV

- charges
- to stabilize the dark matter candidate
- > The proposed model could accommodate both light and heavy thermal dark matter scenarios
- > The parameter space of the model can be probed in:
 - > Various searches of milli-charged particles
 - > Neutrino telescopes

> A radiative neutrino mass model is presented, in which the particles within the loop carry small electric

> Unlike the conventional scotogenic setup, this scheme doesn't require imposition of any new symmetry

> Testable lepton flavor violating signals

> Next generation $o\nu\beta\beta$ decay experiments

Image credit:quanta magazine

Thank you for your attention!

Loop enhanced neutrinoless double beta decay

Enhanced contribution to $m_{\beta\beta}$: energy scale of neutrino self energy is similar order of momentum transfer of the $o\nu\beta\beta$ process

S. Jana, M. Klasen, VPK, and L. P. Wiggering (2023)

Light Mediator Constraints

Z-decay width measurements:

 $\Box \quad Z \to S_1^* S_1: \Gamma_Z \propto \cos^2 2\theta \implies \text{Choosing } \theta \simeq \frac{\pi}{4}$

 \Box $Z \rightarrow S_1 S_2$: lower bound on mass of $S_2 : m_{S_2} > 90$ GeV

W-decay measurements and LEP constraints::

Electroweak precision observables:

> To be consistent with other constraints, choose we mass hierarchy of the form $m_{S_1} \ll m_{S_2} = m_{\phi_1^+} = m_{\phi_2^+}$

T-parameter: $T = \frac{\cos^2 2\theta \mathcal{F}(m_{S_1}^2, m_{S_1})}{2\pi^2 \pi}$

Lower bound on mass of charged scalars: $m_{\phi_{1,2}^+} > 100$ GeV

$$\frac{\mu_{S_2}^2}{\mu^2} \Longrightarrow \text{ suppressed for } \theta \simeq \frac{\pi}{4}$$

Light Mediator Other constraints: Higgs observables

Invisible decay of Higgs:

 $\square \text{ SM Higgs } h \to S_1^*S_1$

 $\square V \supset \frac{v}{2} \left(\lambda_{H\phi_1} + \lambda_{H\phi_2} + \lambda'_{H\phi_1} + \lambda'_{H\phi_2} \right)$

 $\Rightarrow \lambda_{H\phi_1} + \lambda_{H\phi_2} \simeq 2\lambda_{H\phi_1\phi_2} - ($

 $\succ h \rightarrow \gamma \gamma$:

 $\square V \supset \lambda_{H\phi_1} v(h\phi_1^+\phi_1^-) + \lambda_{H\phi_2} v(h\phi_2^+\phi_2^-):$

Modify the Higgs signal strengt

$$(\lambda'_{H\phi_1} + \lambda'_{H\phi_2}) \propto \frac{2m_{\phi^{\pm}}^2}{v^2}$$

th into
$$\gamma\gamma$$
: $R_{\gamma\gamma} = \frac{Br(h \to \gamma\gamma)}{Br(h \to \gamma\gamma)_{SM}} \Rightarrow R_{\gamma\gamma} \simeq 0.8$