$\Lambda_b \to \Lambda^{(*)} \nu \bar{\nu}$ decays and the recent $B^+ \to K^+ \nu \bar{\nu}$ results from Belle-II

Dargi Shameer Collaborators: Diganta Das Ria Sain

Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad

October 15, 2024

KO K K Ø K K E K K E K V K K K K K K K K K

Introduction

- ▶ The flavor-changing neutral current (FCNC) transitions such as the $b \rightarrow s \ell \ell$ and the $b \to s \nu \bar{\nu}$ are among the most sensitive probes for physics beyond the Standard Model (SM).
- ▶ The Belle-II experiment has recently reported the first measurement of $B^+ \to K^+ \nu \bar{\nu}$ decay and it exceeds the Standard Model prediction by 2.7 σ .
- ▶ The deviation may be an indication of new physics beyond the Standard Model in the $b \rightarrow s \nu \bar{\nu}$ sector.
- ▶ The electromagnetic corrections and $c\bar{c}$ resonance effects are not present in $b \rightarrow s \nu \bar{\nu}$
- ▶ The implications of the Belle-II result on the baryonic decay modes $\Lambda_b \to \Lambda^{(*)} \nu \bar{\nu}$ are studied.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ The decays can be studied in Tera-Z factories such as FCC-ee

$b \rightarrow s \nu \bar{\nu}$ Feynman diagram

Figure: Lowest-order SM Feynman diagrams for $b \to s \nu \bar{\nu}$ transitions.

 $A \equiv \lambda \cdot A \stackrel{\text{def}}{=} \lambda \cdot A \stackrel{\text{def}}{=} \lambda \cdot A \stackrel{\text{def}}{=} \lambda$

È

 2990

Effective Hamiltonian

The $b \rightarrow s \nu \nu$ Effective Hamiltonian in a low energy effective theory with additional right-handed neutrinos

$$
\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \lambda_t \bigg[C^{\text{SM}} \mathcal{O}^{\text{SM}} + \sum_{A,B=L}^{R} \sum_{ij} C_{AB}^{ij} \mathcal{O}_{AB}^{ij} \bigg] \tag{1}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where the SM operator

$$
O^{\text{SM}} = (\bar{s}\gamma_{\mu} P_L b)(\bar{\nu}\gamma^{\mu} P_L \nu), \quad C^{SM} = -\frac{2(1.469 \pm 0.017)}{s_W^2},
$$

The New Physics operators are

$$
\mathcal{O}_{AB}^{ij} = (\bar{s}\gamma_{\mu} P_A b)(\bar{\nu}^i \gamma^{\mu} P_B \nu^j), \quad C_{AB}^{ij}, \quad A, B = L, R.
$$

E. E. Jenkins, A. V. Manohar, and P. Stoffer, JHEP 03, 016 (2018), 1709.04486. Y. Liao, X.-D. Ma, and Q.-Y. Wang, JHEP 08, 162 (2020), 2005.08013.

Differential branching ratios

In case of lepton flavor conserving new physics the total differential branching ratios $(\mathsf{SM+NP})$ for $\Lambda_b \to \Lambda \nu \bar{\nu}$ and $\Lambda_b \to \Lambda^* \nu \bar{\nu}$ are

$$
\frac{d\mathcal{B}(\Lambda_b \to \Lambda \nu \bar{\nu})}{dq^2 d \cos \theta_{\Lambda}} = 2N_{\Lambda}^2 \bigg[F_{\Lambda}^A \mathbb{C}_- + F_{\Lambda}^V \mathbb{C}_+ + \cos \theta_{\Lambda} F_{\Lambda}^{AV} \text{Re}(\mathbb{C}') \bigg] \tag{2}
$$

$$
\frac{d\mathcal{B}(\Lambda_b\to\Lambda^*\nu\bar{\nu})}{dq^2}=\frac{N_{\Lambda^*}^2}{3m_{\Lambda^*}^2}\left[G_{\Lambda^*}^A\mathbb{C}_++G_{\Lambda^*}^V\mathbb{C}_+\right],\qquad(3)
$$

Where the Wilson coefficients are

$$
\mathbb{C}_{-} = \left| \delta_{ii} \mathbf{C}^{\text{SM}} + \delta_{ij} \left(\mathbf{C}_{LL}^{ij} - \mathbf{C}_{RL}^{ij} \right) \right|^{2} + \left| \delta_{ij} \left(\mathbf{C}_{LR}^{ij} - \mathbf{C}_{RR}^{ij} \right) \right|^{2} \tag{4}
$$

$$
\mathbb{C}_{+} = \left| \delta_{ii} \mathbf{C}^{\text{SM}} + \delta_{ij} \left(\mathbf{C}_{LL}^{ij} + \mathbf{C}_{RL}^{ij} \right) \right|^{2} + \left| \delta_{ij} \left(\mathbf{C}_{LR}^{ij} + \mathbf{C}_{RR}^{ij} \right) \right|^{2} \tag{5}
$$

KORKARRA ERKER SAGA

G. Buchalla and A. J. Buras, Nucl. Phys. B 548, 309 (1999), hep-ph/9901288. J. Brod, M. Gorbahn, and E. Stamou, Phys. Rev. D 83, 034030 (2011), 1009.0947

$$
\mathbb{C}' = (\delta_{ii} C^{SM} + \delta_{ij} (C_{LL}^{ij} - C_{RL}^{ij}))^* \times (\delta_{ii} C^{SM} + \delta_{ij} (C_{LL}^{ij} + C_{RL}^{ij})) + (\delta_{ij} (C_{LR}^{ij} - C_{RR}^{ij}))^* (\delta_{ij} (C_{LR}^{ij} + C_{RR}^{ij}))
$$
(6)

The form factors are

$$
F_{\Lambda}^{A} = \left(\left(m_{\Lambda_b} - m_{\Lambda} \right)^2 s_{+} f_0^{A^2} + 2 q^2 s_{+} f_{\perp}^{A^2} \right) \tag{7}
$$

$$
F_{\Lambda}^{V} = \left(\left(m_{\Lambda_b} + m_{\Lambda} \right)^2 s_- f_0^{V^2} + 2 q^2 s_- f_{\perp}^{V^2} \right) \tag{8}
$$

KOKK@KKEKKEK E 1990

$$
F_{\Lambda}^{\text{AV}} = -\alpha_{\Lambda} \left(2q^2 \sqrt{s_{-} s_{+}} f_{\perp}^{\text{A}} f_{\perp}^{\text{V}} + (m_{\Lambda_b}^2 - m_{\Lambda}^2) \sqrt{s_{-} s_{+}} f_0^{\text{A}} f_0^{\text{V}} \right) \tag{9}
$$

$$
G_{\Lambda^*}^A = \left(6f_g^{A^2}m_{\Lambda^*}^2q^2s_- + f_0^{A^2}s_+^2s_-\left(m_{\Lambda_b} - m_{\Lambda^*}\right)^2 + 2f_\perp^{A^2}q^2s_-s_+^2\right) \tag{10}
$$

$$
G_{\Lambda^*}^V = \left(6f_g^{V^2}m_{\Lambda^*}^2q^2s_+ + f_0^{V^2}s_-^2s_+(m_{\Lambda_b}+m_{\Lambda^*})^2 + 2f_\perp^{V^2}q^2s_+s_-^2\right) \tag{11}
$$

William Detmold and Stefan Meinel Phys.Rev.D 93 (2016) 7, 074501 Stefan Meinel, Gumaro Rendon Phys.Rev.D 105 (2022) 5, 054511

LFV differential branching ratio

In case of lepton flavor violation new physics the differential branching ratios (only np) for $\Lambda_b\to\Lambda\nu\bar\nu$ and $\Lambda_b\to\Lambda^*\nu\bar\nu$ are

$$
\frac{d\mathcal{B}(\Lambda_b \to \Lambda \nu \bar{\nu})}{dq^2} = 6N_{\Lambda}^2 \Big[F_{\Lambda}^A (C^{SM} + \mathbb{C}_{-}^{LFV}) + F_{\Lambda}^V (C^{SM} + \mathbb{C}_{+}^{LFV}) \Big] \tag{12}
$$

$$
\frac{d^{2}(\Lambda_{b} \to \Lambda^{*} \nu \bar{\nu})}{dq^{2}} = 2N_{\Lambda^{*}}^{2} \left[\left(G_{\Lambda^{*}}^{A} C^{SM} + F_{\Lambda^{*}}^{A} C_{-}^{L F V} \right) + \left(G_{\Lambda^{*}}^{V} C^{SM} + F_{\Lambda^{*}}^{V} C_{+}^{L F V} \right) \right]
$$
\n
$$
(13)
$$

Where the wilson coefficients are

$$
\mathbb{C}_{-}^{LFV} = \sum_{i \neq j} \left[|C_{LL}^{ij} - C_{RL}^{ij}|^2 + |C_{LR}^{ij} - C_{RR}^{ij}|^2 \right],\tag{14}
$$

$$
\mathbb{C}_{+}^{LFV} = \sum_{i \neq j} \left[|C_{LL}^{ij} + C_{RL}^{ij}|^2 + |C_{LR}^{ij} + C_{RR}^{ij}|^2 \right] \tag{15}
$$

KORK STRAIN A STRAIN A COMP

$$
\mathbb{C}^{\prime LFV} = \sum_{i \neq j} \left(C_{LL}^{ij} - C_{RL}^{ij} \right)^* \left(C_{LL}^{ij} + C_{RL}^{ij} \right) + \sum_{i \neq j} \left(C_{LR}^{ij} - C_{RR}^{ij} \right)^* \left(C_{LR}^{ij} + C_{RR}^{ij} \right) \tag{16}
$$

Marzia Bordone, Muslem Rahimi, K. Keri Vos Eur.Phys.J.C 81 (2021) 8, 756

Diganta Das Eur.Phys.J.C 79 (2019) 12, 1005

Differential branching ratio in Standard Model

Figure: Standard Model prediction for $\Lambda_b \to \Lambda^{(*)} \nu \bar{\nu}$. The bands correspond to the uncertainties sourced by the form factors, EW correction, and CKM.

 4 ロ) 4 何) 4 ミ) 4 3)

Ğ,

 $2Q$

Longitudinal polarization fraction in Standard model

$$
F_L^{\Lambda} = \frac{(m_{\Lambda_b} - m_{\Lambda})^2 s_+ f_0^{A^2} \mathbb{C}_- + (m_{\Lambda_b} + m_{\Lambda})^2 s_- f_0^{V^2} \mathbb{C}_+}{(F_{\Lambda}^A + F_{\Lambda}^V) C^{5M}}
$$
(17)

$$
F_L^{\Lambda^*} = \frac{\left(m_-^*\right)^2 s_+^2 s_- f_0^{\Lambda^2} \mathbb{C}_- + \left(m_+^*\right)^2 s_-^2 s_+ f_0^{\Lambda^2} \mathbb{C}_+}{\left(F_{\Lambda^*}^{\Lambda} + F_{\Lambda^*}^{\Lambda}\right) C^{5M}}
$$
(18)

where we have defined $m^*_\pm=m_{\Lambda_b}\pm m_{\Lambda^*}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

forward-backward asymmetry in Standard model

$$
A_{\text{FB}}^{\Lambda} = -\alpha_{\Lambda} \sqrt{s_{-} s_{+}} \frac{2q^{2} f_{\perp}^{A} f_{\perp}^{V} + (m_{\Lambda_b}^{2} - m_{\Lambda}^{2}) f_{0}^{A} f_{0}^{V}}{(F_{\Lambda}^{A} + F_{\Lambda}^{V}) C^{5M}} \text{Re}(\mathbb{C}^{V})
$$
(19)

(c) A_{FB} Vs q^2 in the Standard Model

Standard Model predictions

(d) : Standard Model predictions for $\Lambda_b \to \Lambda^{(*)}$ observables. The $\Lambda_b \to \Lambda^*$ observables are integrated from 16 GeV^2 to the end point 4 ロ) 4 何) 4 ミ) 4 3)

 2990

B

New Physics Scenarios

Lepton flavour structure New Physics in three scenarios

- ▶ Lepton Flavour Universality: The Hamiltonian being identical for all neutrino flavours, the total branching ratio is obtained by multiplying a factor of 3 to the branching ratio of an individual flavour.
- ▶ Lepton Flavor Universality violation with conserved Lepton Flavor: The Hamiltonian is not identical for all neutrino flavours; the sum of an individual flavour obtains the total branching ratio.
- \blacktriangleright Lepton Flavor Violation: In this case, neutrinos of different flavours appear in the NP operators, and the sum of a different flavour obtains the total branching ratio.

KORKAR KERKER SAGA

There are four New Physics Wilson coefficients C_{LL}^{ij} , C_{LR}^{ij} , C_{RL}^{ij} , C_{RR}^{ij} Two scenarios for each Lepton flavour structure

 \blacktriangleright C_{LL}^{ij} , C_{RL}^{ij} are non-zero and C_{RL}^{ij} , $C_{RR}^{ij}=0$

$$
\blacktriangleright \ \ C_{RL}^{ij}, \ C_{RR}^{ij} \ \text{are non-zero and} \ \ C_{LL}^{ij}, \ C_{RL}^{ij} = 0
$$

Constraints on the $\Lambda_b \to \Lambda^{(*)} \nu \bar{\nu}$ branching ratios and $\mathcal{R}_{\nu\nu}^{\Lambda^{(*)}}$

	$C_{LL} > 0$ $C_{RL} > 0$	$C_{LL} < 0$ $C_{RL} < 0$	$C_{LL}>0$ $C_{RL} < 0$	$C_{LL} < 0$ $C_{RL} > 0$		$C_{LR}>0$ $C_{RR}>0$	$C_{LR} < 0$ $C_{RR} < 0$	$C_{LR}>0$ $C_{RR} < 0$	$C_{LR} < 0$ $C_{RR}>0$
$\mathcal{B}(\Lambda_b \to \Lambda \nu \nu)$	1.20×10^{-5} 1.14×10^{-6}	2.79×10^{-5} 5.45×10^{-6}	8.64×10^{-6} 1.12×10^{-6}	3.66×10^{-5} 5.71×10^{-6}	$\mathcal{B}(\Lambda_b\to\Lambda\nu\nu)$	9.95×10^{-6} 5.48×10^{-6}	9.54×10^{-6} 5.48×10^{-6}	1.12×10^{-5} 5.49×10^{-6}	1.12×10^{-5} 5.49×10^{-6}
$\mathcal{R}(\Lambda_b \to \Lambda \nu \nu)$	1.77 0.36	3.77 0.97	1.35 0.39	4.85 1.00	$\mathcal{R}(\Lambda_s \to \Lambda \nu \nu)$	1.50 1.00	1.50 1.00	1.66 1.00	1.66 1.00
$B(\Lambda_b \to \Lambda^* \nu \nu)_{16}$	6.13×10^{-9} 2.75×10^{-10}	7.18×10^{-9} 1.01×10^{-9}	2.32×10^{-9} 1.76×10^{-10}	2.22×10^{-9} 2.09×10^{-9}	$\mathcal{B}(\Lambda_b\to \Lambda^*\nu\nu)_{16}$	3.11×10^{-9} 1.93×10^{-9}	3.05×10^{-9} 1.96×10^{-9}	4.78×10^{-9} 1.99×10^{-9}	4.77×10^{-9} 1.95×10^{-9}
$\mathcal{R}(\Lambda_b \to \Lambda^* \nu \nu)_{\mu}$	2.40 0.33	2.78 0.61	1.13 0.30	6.52 1.00	$\mathcal{R}(\Lambda_b \to \Lambda^* \nu \nu)_{16}$	1.29 1.00	1.29 1.00	1.92 1.00	1.92 1.00

(e) Lepton flavour universal new physics with $LR\,=\,(f)$ Lepton flavour universal new physics with $RL\,=\,$ $0. RR = 0$ $0.LL = 0$

(g) Lepton Flavor Universality violation and conserved (h) Lepton Flavor Universality violation and conserved Lepton Flavor with $LR = 0$, $RR = 0$ Lepton Flavor with $RL = 0$, $LL = 0$

Figure: Constraints on Wilson coefficients

KORKARRA ERKER SAGA

Summary

- ▶ The branching ratios, F_L and A_{FB} of $\Lambda_b \to \Lambda \nu \bar{\nu}$ and $\Lambda_b \to \Lambda^* \nu \bar{\nu}$ are determined in the Standard Model
- ▶ Implications of the latest $B^+ \to K^+ \nu \bar \nu$ data on $\Lambda_b \to \Lambda \nu \bar \nu$ and $\Lambda_b \to \Lambda^* \nu \bar \nu$ are studied.
- ▶ Three New Physics scenarios considered: Lepton flavour universality, Lepton flavour universality violation with conserved lepton flavour and Lepton flavour violation are determined

KO K K Ø K K E K K E K V K K K K K K K K K