Probing new physics with high energy appearance events @ NOvA

Dr. K N Deepthi, Chinmay Bera

Mahindra École Centrale School of Engineering, Mahindra University, India-500043

Collaboration: Prof. Mark Messier and Prof. Jon Urheim (Indiana University)

November 3, 2024

- **1** Non-standard interactions (NSIs).
- ② Constraining matter NSI paremeters with NOvA HE events.
- 3 Environmental neutrino decoherence.
- **4** Constraining decoherence params with NOvA HE events.

5 Conclusions

NOvA experiment

- NOvA : NuMI Off-axis ν_e Appearance Experiment with a baseline of 810 km.
- ν_{μ} beam produced : Fermilab's NuMI beam facility directed at an off-axis angle : 14.6 milli radians.
- Two identical liquid scintillator detectors.
- Primary Objective : To determine three-flavour neutrino oscillation parameters.
- NOvA uses $1 < E_{\nu} < 4$ GeV ν_e events to achieve this goal. In this work, we consider $4 < E_{\nu} < 20$ GeV ν_e events (NOvA side band events) to study the sub-leading effects.

Non-standard interactions (NSIs)

Non-standard interactions (NSIs)

• NSI speculated by L. Wolfenstein, in his seminal paper [Phys. Rev. D17, 2369 (1978)], before the discovery of neutrino oscillations.

- Standard NC interaction : $\nu_{\alpha} + f \rightarrow \nu_{\alpha} + f$
- Non-Standard NC interaction : $\nu_{\alpha} + f \rightarrow \nu_{\beta} + f$
- The effective four fermion Lagrangian density

$$\mathcal{L}_{\rm NSI}^{NC} = -2\sqrt{2}G_F \epsilon_{\alpha\beta}^{fC} (\overline{\nu}_{\alpha}\gamma^{\rho}P_L\nu_{\beta})(\bar{f}\gamma_{\rho}P_Cf) + \text{h.c.}$$
(1)

• The effective Hamiltonian

$$H_{eff} \simeq \frac{1}{2E} U \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U^{\dagger} + V.$$
 (2)

• The matter potential V

$$V = 2\sqrt{2}G_F N_e(r) E \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu}e^{i\phi_{e\mu}} & \epsilon_{e\tau}e^{i\phi_{e\tau}} \\ \epsilon_{e\mu}e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau}e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau}e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau}e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix},$$
(3) 5/2

Modified Appearance probability $P_{\mu e}$

• The Appearance probability for (NH) : expressed in terms of s_{13} , $r = \Delta m_{21}^2 / \Delta m_{31}^2$ and $\epsilon_{e\tau}$ (small parameters), ϵ_{ee} :

$$P_{\mu e} = x^{2}f^{2} + 2xyfg\cos(\Delta + \delta_{CP}) + y^{2}g^{2} + 4\hat{A}\epsilon_{e\tau}s_{23}c_{23}(xf[f\cos(\phi_{e\tau} + \delta) - g\cos(\Delta + \delta + \phi_{e\tau})]) - yg[g\cos\phi_{e\tau} - f\cos(\Delta - \phi_{e\tau})]) + \mathcal{O}(s_{13}^{2}\epsilon_{e\tau}, s_{13}\epsilon_{e\tau}^{2}, \epsilon_{e\tau}^{3}) + \mathcal{O}(\epsilon_{e\mu}) + h.o.$$
(4)

$$x = 2s_{13}s_{23}, \ y = rc_{23}\sin 2\theta_{12}, \ \Delta = \frac{\Delta m_{31}^2 L}{4E}, \ \hat{A} = \frac{A}{\Delta m_{31}^2},$$

$$f, \bar{f} = \frac{\sin[\Delta(1 \mp \hat{A}(1 + \epsilon_{ee}))]}{(1 \mp \hat{A}(1 + \epsilon_{ee}))}, \ g = \frac{\sin[\hat{A}(1 + \epsilon_{ee})\Delta]}{\hat{A}(1 + \epsilon_{ee})}$$

[Liao, Marfatia, Whisnant, Phys. Rev. D 93, 093016] • For IH : $\Delta \to -\Delta$ and $\hat{A} \to -\hat{A}$

NOvA collaboration results (arXiv: 2403.07266)

NOvA Collaboration: fig. 4 in ref. *arxiv:2403.07266* (upper). On behalf of the NOvA collaboration: figure from ref. *FERMILAB-POSTER-22-033-ND* (lower).

Our work

Constraining NSI parameters using NOvA HE events

Parameters

- Simulation details and oscillation parameters are taken from ref. *Phys. Rev. D* 106 (3) (2022) 032004.
 - Run time : 6 years for ν and 3 years for $\bar{\nu}$.
 - Exposure : 13.6×10^{20} POT for ν and 12.5×10^{20} POT for $\bar{\nu}$.
 - Target volume (FD) : 14 kton.
 - Baseline : 810 km.
 - Earth's crust density : $2.84 \ gm/cm^3$.

Parameters	True values	3σ ranges
$\sin^2 heta_{12}$	0.307	Fixed
$\sin^2 \theta_{13}$	0.021	[0.02:0.02405]
$\sin^2 \theta_{23}$ NH (IH)	0.57 (0.56)	[0.38:0.64]
δ_{CP} NH (IH)	0.82π (1.52π)	$[0:2\pi]$
$\frac{\Delta m_{21}^2}{10^{-5} \ eV^2}$	7.53	Fixed
$\frac{\Delta m_{32}^2}{10^{-3} \ eV^2}$ NH (IH)	2.41 (-2.45)	$[\pm 2.29:\pm 2.54]$

Table: Standard oscillation parameters

• NSI bounds : $|\epsilon_{e\tau}| \le 0.4$ and $|\epsilon_{e\mu}| \le 0.3$ (arxiv:2403.07266)

9/29

Oscillation probability in the presence of NSI (non-zero $\epsilon_{e\tau}$)

Oscillation probability when only $|\epsilon_{e\tau}|e^{i\phi_{e\tau}}$ is non zero.

Corresponding Event rates

Number of events when only $|\epsilon_{e\tau}|e^{i\phi_{e\tau}}$ is non zero.

\bullet NSI

Cases		ν_e -app events		$\bar{\nu}_e$ -app events			
		1 - 4	1 - 20	Excess	1 - 4	1 - 20	Excess
		GeV	GeV		GeV	GeV	
SM		59.0	61.0	2.0	19.0	19.6	0.6
$ \epsilon_{e\tau} = 0.4$	$\delta_{e\tau} = 0$	70.0	73	3.0	36.3	37.4	1.1
	$\delta_{e\tau} = \pi/2$	19.0	20.0	1.0	14.1	14.4	0.3
	$\delta_{e\tau} = 3\pi/2$	118.3	122.3	4.0	31.3	32.4	1.1

Table: Excess events at HE considering $\epsilon_{e\tau} \neq 0$.

2D sensitivity of $\epsilon_{e\tau}$ versus δ_{CP} and $\delta_{e\tau}$ (95% CL)

2D sensitivity of $\epsilon_{e\mu}$ versus δ_{CP} (95% CL)

Conclusions

- The degenerate band observed around higher values of $\epsilon_{e\tau} > 1$ in the left side plot disappears when we consider the high energy events (1-20 GeV).
- Same conclusion can be drawn when the true hierarchy is assumed to be inverted hierarchy.
- Our conclusions agree with the conclusion drawn in the recent NOvA NSI paper (arXiv: 2403.07266) where the authors mention "Analyzing a wider range of neutrino energies, and possibly combining with measurements from other experiments, is being explored to increase sensitivity to the upper contour in the future."

Effect of environmental decoherence OvA HE

Environmental decoherence

• Neutrino system interacts with the stochastic environment.

•
$$\frac{d\tilde{\rho}_m(t)}{dt} = -i \left[H, \tilde{\rho}_m(t)\right] + \mathcal{D}\left[\tilde{\rho}_m(t)\right] .$$

• Assumptions:

(a) complete positivity,

(b) trace preserving conditions,

(c) increasing von Neumann entropy,

(d) energy conservation of the neutrino system.

Fig 2. Neutrino system as an open quantum system.

Oscillation probability in the presence of decoherence

•
$$P_{\alpha\beta}(t) = Tr[\tilde{\rho}_{\alpha}(t)\tilde{\rho}_{\beta}(0)]$$
.
• $P_{\alpha\beta}(L) = \delta_{\alpha\beta} - 2\sum_{j>k} Re\left(\tilde{U}_{\beta j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{V}^*_{\beta k}\right)$
 $+ 2\sum_{j>k} Re\left(\tilde{U}_{\beta j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\beta k}\right)\exp(-\Gamma_{jk}L)\cos\left(\frac{\tilde{\Delta}m_{jk}^2}{2E}L\right)$
 $+ 2\sum_{j>k} Im\left(\tilde{U}_{\beta j}\tilde{U}^*_{\alpha j}\tilde{U}_{\alpha k}\tilde{U}^*_{\beta k}\right)\exp(-\Gamma_{jk}L)\sin\left(\frac{\tilde{\Delta}m_{jk}^2}{2E}L\right)$.

- Damping of interference terms by a factor $e^{-\Gamma L}$ in the oscillation probability.
- Energy dependency on Γ :

$$\Gamma_{jk}(E_{\nu}) = \Gamma_0 \left(\frac{E_{\nu}}{GeV}\right)^n$$
; $n = 0, \pm 1, \pm 2$.

Oscillation probability and event rate in the presence of decoherence

 $\Gamma_{21} = \Gamma_{31} = \Gamma_{32} = 1.0 \times 10^{-23} \text{ GeV}$. ν_e appearance probability and event rate (upper row). Disappearance probability and event rate (lower row).

Events

• Decoherence $(\Gamma_{21} = \Gamma_{31} = \Gamma_{32} = 1.0 \times 10^{-23} \text{ GeV})$

ν_e -app events			ν_{μ} -disapp events			
Cases	1 - 4	1 - 20	Excess events	0 - 5	0 - 20	Excess events
	GeV	GeV	(4 - 20 GeV)	GeV	GeV	(5 - 20 GeV)
SM	59.0	61.0	2.0	215.0	589.8	374.8
n = -2	59.1	61.2	2.1	218.0	592.7	374.7
n = -1	59.3	61.7	2.4	220.8	594.9	374.1
n = 0	59.7	66.0	6.3	225.9	592.3	366.4
n = 1	60.7	101.0	40.3	234.8	529.8	295.0
n=2	63.0	165.9	102.9	250.1	423.8	173.7

Table: Excess #events at HE considering $\Gamma_{ij} \neq 0$.

Constraining Γ for power law dependency $n \geq 0$

- Since $n \ge 0$ have significant contribution to modify probability and number of events, we analyse the upper bounds for $n \ge 0$.
- In all the three cases (n = 0 (left plot), n = 1 (middle plot) and n = 2 (right plot)), we see that the dashed lines corresponding to 1-20 GeV events impose tighter bounds on the decoherence parameter Γ .

Constraining Γ for 1 - 5 GeV (solid lines) and 1- 20 GeV (dashed lines). In left for n = 0, middle n = 1 and right for n = 2. Marginalized over δ_{CP} , θ_{23} , Δm_{31}^2 .

2D sensitivity of θ_{23} versus δ_{CP}

 $\Gamma_{21} = \Gamma_{31} = \Gamma_{32} = 1.0 \times 10^{-23} \text{ GeV}$ in true for n = 2. Marginalized over Δm_{31}^2 , θ_{13} and Γ .

- Considering 1-20 GeV events has provided tighter bounds on decoherence parameter Γ .
- The 2D sensitivity of θ_{23} versus δ_{CP} shows, how the measurement of θ_{23} and δ_{CP} gets effected in the presence of non-zero decoherence in nature.

Thank you!

Back up!

Background events

- Beam and NC backgrounds significant at 1-4 GeV.
- At high energy beam backgrounds are significant.

2D sensitivity of $\epsilon_{e\tau}$ versus δ_{CP} (90% CL)

NOvA collaboration results (arXiv: 2403.07266)

NOvA Collaboration: fig. 1 in ref. arxiv:2403.07266

• The effective Hamiltonian

$$H_{eff} \simeq \frac{1}{2E} U \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U^{\dagger} + V.$$
 (5)

 ${\ensuremath{\,\circ\,}}$ The matter potential V

$$V = 2\sqrt{2}G_F N_e(r) E \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix},$$
(6)