Α

Presentation

on

Effects of Quantum Gravity in the Kerr Black Hole Paradigm

17TH INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY

PPC 2024

14 -18 October 2024, Hyderabad, India

Presented by Suryakanta Swain

Department of Physics and Astronomical Science Central University of Himachal Pradesh Shahpur-176206, Kangra, H.P., India

16th OCT, 2024

PLAN OF TALK

- ✤ OBJECTIVE
- ✤ INTRODUCTION
- ✤ SETTING THE STAGE
- CALCULATION
- CONCLUSION
- ✤ REFFERENCES

Cosmic microwave background

Schematic Diagram For Rotating Black hole

OBJECTIVE

• To study the accretion and evaporation of the rotating black holes

using Loop Quantum Cosmology (LQC).

• To examine the nature of supermassive rotating black hole in the

background of LQC.

Introduction

- Loop Quantum Gravity (LQG) is one of the special features of quantum gravity theories which is completely non-perturbative, explicit background independent approach to quantum gravity.
- Generally the implication of LQG on cosmology for the study of our universe is called as loop quantum cosmology (LQC).
- Kerr explains successfully regarding the geometry of uncharged black holes. As we know from the no hair theorem, a spinning uncharged black hole is only described by its two quantities. One is its mass (M) and another is respective angular momentum (J).
- Depending upon these various quantities such as mass, angular momentum, accretion efficiency (f), energy density (ρ) and dark energy parameter (ω), we can calculate the evolution of the rotating Kerr black hole.

SETTING THE STAGE

✤ For a spatially flat FRW universe (k=0) filled with dust and dark energy, the Friedmann equation, Raychaudhuri's equation and energy conservation equation in loop quantum cosmology respectively take the form

$$H^{2} = \frac{8\pi G}{3} \left(\rho_{\phi} + \rho_{m} \right) \left\{ 1 - \frac{\left(\rho_{\phi} + \rho_{m} \right)}{\rho_{c}} \right\}$$
(1)

 $(\mathbf{3})$

$$\dot{H} = -4\pi G(\rho_{\phi} + \rho_m + p_{\phi}) \left\{ 1 - \frac{2(\rho_{\phi} + \rho_m)}{\rho_c} \right\}$$
(2)

And $(\dot{\rho_{\phi}} + \dot{\rho_{m}}) + 3H(\rho_{\phi} + \rho_{m} + p_{\phi}) = 0$

The expression for density ho(t) in radiation and matter dominated era can be calculated as

$$\rho(t)_{t < t_e} = \rho_0 \left[\frac{\rho_0}{\rho_c} + \left\{ 2 \sqrt{\frac{8\pi G}{3}} \rho_0^{\frac{1}{2}} (t - t_e) + \frac{3}{2} \sqrt{\frac{8\pi G}{3}} \rho_0^{\frac{1}{2}} (t_e - t_o) + \left(1 - \frac{\rho_0}{\rho_c}\right)^{\frac{1}{2}} \right\}^2 \right]^{-1}$$
(4)
$$\rho(t)_{t > t_e} = \rho_0 \left[\frac{\rho_0}{\rho_c} + \left\{ \frac{3}{2} \sqrt{\frac{8\pi G}{3}} \rho_0^{\frac{1}{2}} (t - t_o) + \left(1 - \frac{\rho_0}{\rho_c}\right)^{\frac{1}{2}} \right\}^2 \right]^{-1}$$
(5)

The space time around a rotating black hole with mass M and angular momentum J can be explained by the line element (c=G=1 units)

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} - \frac{4Ma^{*2}r\sin^{2}\theta}{\rho^{2}}d\phi dt + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} + \left(r^{2} + a^{*2} + \frac{2Mra^{*2}\sin^{2}\theta}{\rho^{2}}\right)\sin^{2}\theta d\phi^{2}$$

- The equation of state parameter ω which we calculated as $\omega = 0.01971 \left(\frac{t}{t_0}\right)^2 - 1.0442 \left(\frac{t}{t_0}\right)$
- The accretion of black hole mass with the rate is given by

$$\dot{M}_{acc} = 4\pi f R_{BH}^2 \rho_R \tag{7}$$

(6)

The evaporation of black hole mass with the rate is given by

$$\dot{M}_{evp} = -4\pi R_{BH}^2 \sigma_H T_{BH}^4 \tag{8}$$

Calculation

Now the modified accretion of black hole mass in the radiation dominated era is

$$\dot{M}_{acc} = 4\pi f R_{BH}^2 \rho_0 (\mathbf{1} + \boldsymbol{\omega}) \left[\frac{\rho_0}{\rho_c} + \left\{ 2\sqrt{\frac{8\pi G}{3}} \rho_0^{\frac{1}{2}} (t - t_e) + \frac{3}{2}\sqrt{\frac{8\pi G}{3}} \rho_0^{\frac{1}{2}} (t_e - t_o) + \left(\mathbf{1} - \frac{\rho_0}{\rho_c}\right)^{\frac{1}{2}} \right\}^2 \right]^{-1} (9)$$
Accretion f radiation f or rotating BHs
$$\frac{2.0 \times 10^{16}}{1.5 \times 10^{16}} \int_{0}^{1.5 \times 10^{16}} \int_{0}$$

Now the evolution of rotating black hole mass in the matter dominated era is

$$\dot{M}_{evo} = \dot{M}_{acc} + \dot{M}_{evp} = 4\pi f R_{BH}^2 \rho_0 (1+\omega) \left[\frac{\rho_0}{\rho_c} + \left\{ \frac{3}{2} \sqrt{\frac{8\pi G}{3}} \rho_0^{\frac{1}{2}} (t-t_o) + \left(1 - \frac{\rho_0}{\rho_c}\right)^{\frac{1}{2}} \right\}^2 \right]^{-1}$$

$$-4\pi R_{BH}^2 \sigma_H T_{BH}^4 \qquad (10)$$

$$\int_{0}^{\frac{5}{2}} \frac{1.5 \times 10^{26}}{1.5 \times 10^{26}} \int_{0}^{\frac{5}{2}} \frac{1.5 \times 10^{26}}{1.0 \times 10^{26}} \int_{0}^{\frac{5}{2}} \frac{1.5 \times 10^{26}}{1.5 \times 10^{26}} \int_{0}^{\frac{5}$$

t (in s)

In this research work, we have checked the effect of rotating parameter on the evaporation of rotating black holes

Table 2: Variation of the evaporation time with rotating parameter (a^*) for fixed value of RBH mass and time, and accretion efficiency (f).

$t_i = 10^{-13}$ s, $M_i = 10^{25}$ g, $f = 0.4$	
$(a^*)^2$	t_{evp}
	$(in \ 10^{18} \ s)$
$10^{-12}m_i^2$	33333.32124
$10^{-11}m_i^2$	33333.32124
$10^{-10}m_i^2$	33333.32126
$10^{-9}m_i^2$	33333.32192
$10^{-8}m_i^2$	33333.32274

Heart of the Milky way

 $\approx 10^6 \, M_{\odot}$

Quasar J0313-1806

Image credit: NASA/ESA/ESO/Wolfram Freudling et al. (STECF)

 $\approx 10^9 M_{\odot}$

$\geq 10^{48} \mathrm{gm}$

Swain, S., Sahoo, G. & Nayak, B. Unveiling the evolution of rotating black holes in loop quantum cosmology. *Sci Rep* 14, 16928 (2024). https://doi.org/10.1038/s41598 -024-68000-x

Conclusion

- Accretion of radiation does not affect significantly on the evolution of RBH in loop quantum cosmology.
- Here we found that RBHs formed in the early radiation dominated era evaporated quickly than the RBHs formed in the later time period.
- ✤ Also, we examined that rotating parameter does not affect vitally on the evaporation of RBHs.
- we also successfully investigated that those RBHs having mass greater than equal to 10⁴⁸ gm. they all would have been evaporated by the present time due to the accretion of dark energy.

References

- [1] D. Dwivedee, B. Nayak, M. Jamil, et al., J. Astrophys. Astron. 35, 97 (2014).
- [2] J. Baggot, Quantum Space (Oxford University Press, UK, 2018).
- [3] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 74, 084003 (2006).
- [4] A. Ashtekar, and P. Singh, Class. Quant. Grav. 28, 213001 (2011).
- [5] D. Sahu, and B. Nayak, arXiv:1912.12000.
- [6] H. Wei, and S. N. Zhang, Phys. Rev. D 76, 063005 (2007).
- [7] S. Chen, J. Jing, Class. Quant. Grav. 27, 045003 (2010).
- [8] W. Yang, S. Pan, and J. D. Barrow, Phys. Rev. D 97, 043529 (2018).
- [9] B. Nayak, and L. P. Singh, Mod. Phys. Lett. A 24, 1785 (2009).
- [10] K. A. Meissner, Class. Quant. Grav. 21, 5245 (2004).

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

