### FERMILAB-SLIDES-24-0277-PPD

## Constraining Systematics for Future Sterile Neutrino Analysis at NOvA Experiment

International Conference on Interconnections between Particle Physics and Cosmology

#### Shivam, Bipul Bhuyan, Anne Norrick

October 15, 2024

Indian Institute of Technology, Guwahati





1

- 1. Neutrino Oscillations
- 2. NOvA Experiment
- 3. Sterile Neutrino
- 4. Currrent Results and Improvement
- 5. Conclusion

## **Neutrino Oscillations**

### Neutrino Oscillations



- Neutrinos produced in one flavor state change its flavor during its travel across the distance.
- $\nu_{\alpha}$ , flavor eigenstate which is a superposition of  $\nu_i$ , mass eigenstates.

$$\begin{split} |\nu_{\alpha}\rangle &= \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle & \text{U} = \mathbf{R}(\theta_{23})\mathbf{R}(\theta_{13},\delta)\mathbf{R}(\theta_{12}) \longrightarrow \text{mixing} \\ (\nu_{\alpha}) \\ \nu_{\mu} \\ \nu_{\tau}\rangle &= \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{"atmospheric"}} \times \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{\iota\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{\iota\delta} & 0 & c_{13} \end{pmatrix}}_{\text{"reactor"}} \times \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{"solar"}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}_{3} \end{split}$$

### Neutrino Oscillations

- In most of the long-baseline experiments, we use the  $\nu_{\mu}$  disappearance or  $\nu_{e}$  appearance channels to study the neutrino oscillation parameters.
- As an example, in two flavor approximation  $\nu_{\mu}$  disappearance probability is defined as:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \left(\sin^2 2\theta_{23}\right) \sin^2 \left(\frac{\left(\Delta m_{32}^2\right)L_{\nu}}{4E_{\nu}}\right)$$

- mixing angle determines the magnitude of oscillations.
- mass splitting determines the frequency of oscillations.



### Is Three Flavor Picture Enough?

• Several anomalous results observed by various experiments could suggest a possible explanation beyond the active three-flavor oscillations.



• LSND observed a  $3\sigma$  excess above the expected beam background [1].

- More than one sterile neutrino is possible, but the minimal solution uses the 3+1 model.
- This leads to adding an extra dimension to the PMNS mixing matrix, also leading to an additional oscillation frequency  $\Delta m_{41}^2$ .

# **NOvA** Experiment

### The NuMI Beam



• NOvA is a long-baseline experiment with two functionally identical liquid scintillator detectors.



- **120 GeV** protons from the Fermilab Main Injector strike the target to produce secondary particles.
- Two focussing horns focus the secondary particles that decay into the decay tunnel to produce the  $\nu(\bar{\nu})$  beam.

### **NOvA** Experiment

• The Near Detector is placed 100 m underground at 1 km from the source, and the far detector at 810 km on the surface from the near detector.





- The detectors are placed 14 mrad off-axis.
- The off-axis configuration reduces the neutrino flux but peaks at 2 GeV

## Sterile Neutrino

### Sterile Neutrino at NOvA: Neutral Currents

• Neutral Current Disappearance gives a clean measurement of 3+1 oscillations because of their flavor independency.



- Oscillations begin to manifest at ND for  $\Delta m^2_{41} > 0.5 \text{eV}^2$ .
- Highlighted text is the short baseline approximation.

• Sensitivity to  $\sin^2 \theta_{34}$  at FD NC can be measured independent of  $\sin^2 \theta_{24}$ .

### Sterile Neutrino at NOvA: $\nu_{\mu}$ disappearance

• Any additional  $\nu_{\mu}$  disappearance above the expected 3-flavor oscillation can be manifested as sterile neutrino.



- Highlighted text is the FD oscillation intermixed with the 3-flavor oscillations.
- Charged Current  $\nu_{\mu}$  is sensitive to the  $\theta_{24}$  at both ND and FD.

# Current Results and Improvement

### Sterile Neutrino at NOvA

- Latest NOvA Sterile Neutrino results showing a leading limit on  $\sin^2 \theta_{24}$  at high  $\Delta m_{41}^2$  [2].
- On one hand, the low  $\Delta m_{41}^2$ region is driven by the FD data and is statistically limited.
- On the other hand, at high  $\Delta m_{41}^2$  region where sensitivity is driven by ND is systematically limited.



**Figure 1:** NOvA's 90 % confidence limits in (a)  $\sin^2 \theta_{24}$  vs  $\Delta m_{41}^2$  space with other allowed regions and exclusion contours.[2]

### Sterile Neutrino at NOvA



Figure 2: Sensitivity Contour (at 90% CL) for  $\sin^2 \theta_{24}$  vs  $\Delta m_{41}^2$ 

- We are taking more and more data, which improves the statistics, but with more statistics, we also need to deal with the systematics.
- The figure on the left shows the Sensitivity Contour (at 90% CL) for  $\sin^2 \theta_{24}$  for different systematic groups.
- We can see that the cross-section and flux systematics are the dominant ones, and the future analysis includes constraining the systematics.

### Splitting the Near Detector NC Sample

We used a new approach to implement the ND NC sample, where instead of using the sample as a whole, we divided it into subsamples based on the number of prongs associated with the event.



Figure 3: Example showing two prongs.

- Single prong Sample
- 2 and 3 Prong Sample
- 4 Prong Sample
- >4 Prong Sample



**Figure 4:** Distribution of Reconstructed number of prongs and the interaction fraction

## Conclusion

### Conclusion



Figure 5: Fractional Uncertainty distribution showing the effect of ND constraint on the cross-section systematics for NC sample on the left and  $\nu_{\mu}$  sample on the right

- The distribution in light blue shows the uncertainty at FD without any constraint from the ND.
- Dark Blue distribution represents the FD uncertainty knowing the information about the ND without splitting.
- Pink distribution represents the FD uncertainty with additional information with ND splitting.

- Conditional uncertainty distributions show better constraints on the cross-section uncertainties.
- This split sample approach will allow us to disentangle the signal and systematic effects and help improve the sensitivity at higher  $\Delta m_{41}^2$  region.
- More studies are underway, including zero horn current and ν-on-e studies to improve the flux systematic uncertainties.

## **NOvA** Collaboration



## Thank You

LSND Collaboration, A. Aguilar *etal.*, Evidence for neutrino oscillations from the observation of  $\bar{\nu}_e$  appearance in a  $\bar{\nu}_{\mu}$  beam, Phys. Rev. **D** 64, 112007 (2001)

https://arxiv.org/abs/2409.04553

## **Backup Slides**

### Neutrino Interactions at NOvA

• Before understanding sterile neutrino in NOvA, let's see how we find the interactions in NOvA.



Figure 6: Classification of different types of interaction in the detector

### **Prong Reconstruction**



Figure 7: 3D prong formation

- 2D prongs are formed in each X and Y views (as depicted in the left event displays)
- Then to form the 3D prongs, 2D prongs from both the X-Y views are matched (as depicted in right event displays)

| pngs | Coh                    | DIS                    | SIS                    | QE                     | Res                    |
|------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 1    | 0.029 ( <b>0.071</b> ) | 0.055 ( <b>0.046</b> ) | $0.236 \ (0.254)$      | $0.147 \; (0.091)$     | $0.531 \ (0.535)$      |
| 2    | 0.016 ( <b>0.038</b> ) | 0.051 ( <b>0.051</b> ) | 0.315 ( <b>0.326</b> ) | 0.039~(0.022)          | $0.577 \; (0.561)$     |
| 3    | 0.005 ( <b>0.011</b> ) | 0.103( <b>0.115</b> )  | 0.384 (0.393)          | 0.022(0.011)           | 0.484(0.467)           |
| 4    | 0.001 ( <b>0.004</b> ) | 0.220(0.247)           | 0.414(0.418)           | 0.013 (0.006)          | 0.350( <b>0.322</b> )  |
| 5    | 0 (0.001)              | 0.382 ( <b>0.400</b> ) | 0.379 ( <b>0.387</b> ) | 0.006 ( <b>0.004</b> ) | 0.230 ( <b>0.206</b> ) |
| 6    | 0 (0.001)              | 0.527 ( <b>0.534</b> ) | 0.322 ( <b>0.328</b> ) | 0.001 ( <b>0.001</b> ) | 0.146 ( <b>0.133</b> ) |
| 7    | 0 (0)                  | 0.644 ( <b>0.641</b> ) | 0.261 ( <b>0.278</b> ) | 0 (0.001)              | 0.091 ( <b>0.077</b> ) |
| 8    | 0                      | 0.725 (0.727)          | 0.198 (0.278)          | 0 (0)                  | 0.075 (0.066)          |
| 9    | 0                      | 0.751 ( <b>0.763</b> ) | 0.190 ( <b>0.210</b> ) | 0                      | 0.058 ( <b>0.026</b> ) |

Table 1: Fraction of each interaction with number of prongs.

- The table shows the different interaction fractions with loose CVN scores.
- Losening the CVN score reduces the fraction of QE events and increases the DIS and Res fractions.