COMPOSITE HIGGS MODELS

bridging collider, phase transition, and lattice studies

Avik Banerjee

Tata Institute of Fundamental Research, Mumbai

Based on: [2302.11598], [2406.14633]

PPC 2024, IIT Hyderabad

Why Composite Higgs?

- Hierarchy problem: how the electroweak is stabilized under quantum corrections.
- \bullet Is the Higgs boson an elementary particle? might as well be a composite state, just like a pion!
- Explain why top quark is so heavy compared to $1st$ and $2nd$ generation quarks?
- Electroweak phase transition and CP violation: depends on the shape of the scalar potential

Composite Higgs boson with partially composite top quark

Composite Higgs models

Main idea: UV theory without any elementary scalar

Couple the massless SM to a new strongly coupled gauge theory with fermionic matter [Hyperquark] [Hyperquark]

Figure courtesy: Marco Merchand

Dimensional transmutation creates large hierarchy of scales

Recap: QCD

Electromagnetism remains unbroken

Witten, 1983

Composite Higgs vacuum

Composite Higgs vacuum

$$
{}_0\langle{\rm vac}|[Q^{\hat a},{\cal H}]|{\rm vac}\rangle_0=0,\qquad\text{(``no-tadpole condition''}
$$

 $(M^2)^{\hat{a}\hat{b}} = -\frac{1}{f^2} \left[\left[Q^{\hat{a}}, [Q^{\hat{b}}, \mathcal{H}] \right] \right] \left[\text{vac} \right]_{0} \ge 0$ ("no-tachyon condition")

Tachyonic directions : vacuum misalignment

Vacuum misalignment

$$
V_t \sim C\mu^2(\kappa_1^2 - \kappa_2^2)\phi^{\dagger}\phi + \dots
$$

AB, G Ferretti, Phys.Rev.D 107 (2023) 9, 095006

Similar to QCD V_{mass} and $V_{\text{W,Z}}$ can not misalign

$$
V_{\text{mass}} + V_{W,Z} \sim +\mu^2 \phi^{\dagger} \phi + \dots
$$

Partial compositeness

Requirements:

- ● nearly comormal dynamics above confinement scale
- Large anomalous dimension Large anomalous dimension
to reproduce top mass to reproduce top mass
- Lattice gauge theory studies required to compute the required to compute the anomalous dimension

Ed Bennett et. al. 1 hys. Rev. D 106, 014501
U. Assemble 1 Dhys. Dos. D 07 114505 $\frac{1}{2}$ v. $\frac{1}{2}$ yar et. al. 1 hys. 100 $\sqrt{2}$ 97, 114000

- Physical states are mixture of elementary and composite degrees of freedom
- Top quark is more composite compared to lighter quarks

Vacuum misalignment via 4-Fermi operators

$$
\Psi \stackrel{G/H}{\rightarrow} \Psi_{R_1} + \Psi_{R_2} \implies \kappa_1 t \Psi_{R_1} + \kappa_2 t \Psi_{R_2}
$$
\n
$$
\mathcal{H}_{\text{PC}} = -\frac{i}{2} \int d^4 x \Delta^{\dot{\alpha}\alpha}(x) T \left\{ \mathcal{K}_R^{\dagger} \Psi_\alpha^R(x) \Psi_{Q\dot{\alpha}}^{\dagger}(0) \mathcal{K}^Q + \text{h.c.} \right\}
$$
\n
$$
\frac{V_t \sim C \mu^2 (\kappa_1^2 - \kappa_2^2) \phi^{\dagger} \phi + \dots}{\text{Sign undetermined}}
$$

Regardless of the overall sign, tachyonic directions can exist

AB, G Ferretti, Phys.Rev.D 107 (2023) 9, 095006

$$
C \sim \int \frac{d^4k}{(2\pi)^4} \int d\mu^2 \frac{\rho_1(\mu^2, m_1^2) - \rho_2(\mu^2, m_2^2)}{k^2 + \mu^2}
$$

• Lattice calculations can in principle determine the overall sign dictating which irrep leads to misalignment

ed Bennett et. al. Phys. Rev. D 106, 014501 9
Notes that all Phys. Rev. D 106, 014501 9 V. Ayyar et. al. Phys. Rev. D 97, 114505

$SU(4)/Sp(4)$ coset: Higgs + CP odd singlet

Minimal Higgs potential hypothesis:
inated by the IR contributions (Cole Potential is dominated by the IR contributions (Coleman-Weinberg)

Maximal symmetry: Fully calculable finite scalar potential

 $\overline{\mathbf{1}}$ Effect of strong dynamics is captured by momentum dependent form factors

$SU(4)/Sp(4)$ coset: Higgs + CP odd singlet

Minimal Higgs potential hypothesis:
inated by the IR contributions (Cole Potential is dominated by the IR contributions (Coleman-Weinberg)

Maximal symmetry: Fully calculable finite scalar potential

 $\overline{\mathbf{1}}$ Effect of strong dynamics is captured by momentum dependent form factors

$$
V_{1-\text{loop}}(h,\eta) = V_{\text{mass}} + V_g + V_t
$$

\n
$$
V_{\text{mass}} = Bf^3 \text{tr} \left[\mu_H U + U^{\dagger} \mu_H^{\dagger} \right]
$$

\n• Tadpole for the singlet (CP violation)
\n• Numerically small but relevant for
\ngiving vev to the singlet
\n
$$
V_{\text{CW}} = \frac{N_{\text{eff}}}{2} \int \frac{d^4 p}{(2\pi)^4} \log \left[1 + \frac{m_{W,Z,t}^2(h,\eta) m_1^2 m_2^2}{p^2 (p^2 + m_1^2)(p^2 + m_2^2)} \right]
$$

\nMomentum dependence inside the integral is different from
\nCW potential for elementary scalars

Full analytic computation: AB, M Merchand, I Nalecz JHEP 10 (2024) 106

Finite temperature potential

Imaginary time formalism:
$$
\int dp^0 d^3p f(p^2) \to 2\pi T \sum_{n=-\infty}^{\infty} \int d^3p f(\omega_n^2 + |\vec{p}|^2)
$$

$$
V_{1\text{-loop}} = V_{\text{CW}}^{(T=0)}(\tilde{m}_i) + N_{\text{eff}} \frac{T^4}{2\pi^2} \sum_{i=1}^3 J_B\left(\frac{\tilde{m}_i}{T}\right)
$$

$$
V_{\text{CW}}^{(T=0)}(\tilde{m}_i) = \frac{N_{\text{eff}}}{2} \int \frac{d^3 p}{(2\pi)^3} \sum_{i=1}^3 \tilde{E}_i = \frac{N_{\text{eff}}}{32\pi^2} \sum_{i=1}^3 \tilde{m}_i^4 \log\left(\frac{\tilde{m}_i}{\mu}\right)
$$

zero temperature part meery separates even in the presence of form factors

Fully calculable with maximal symmetry

Contributions from W,Z,t dominates

resonance contributions are
exponentially suppressed for α continually suppressed for T_n -100 GeV

 $J_B(x) \equiv \int_0^{\infty} dy \, y^2 \log \left[1 - e^{-\sqrt{y^2 + x^2}}\right]$

Phase transition and Gravitational wave

Tunneling from false vacuum to true EW vacuum by one step transition

Nucleation temperature: $T_n \sim v_{EW}$

In presence of CP violation FOPT
is viable even with IR contributions is viable even with IR contributions to the pNGB potential

13

Latent heat of FOPT and the peak
frequency of the GWs depend on the frequency of the GWs depend on the amount of CP violation

 -0.5 -0.5 -1.0 -1.0 -1.5 $\log(\frac{f_{\rm SW}}{1~\rm Hz})$ $-1.5\frac{\text{C}}{\text{DQ}}$ -2.0 -2.5 -3.0 -2.0 -3.5 -4.0 -2.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 $tan(\delta)$

AB, M Merchand, I Nalecz JHEP 10 (2024) 106

Collider probes and constraints

 $c_{gg}=c_{\gamma\gamma}=0$

Gravitational waves @LISA

 10^{0}

 10^{-2}

 $f[Hz]$

 10^{-6}

 10^{-4}

0.80

 $10²$

AB, M Merchand, I Nalecz JHEP 10 (2024) 106

15

Major References

- Pioneering works:
	- Composite pNGB Higgs: D B Kaplan, H Georgi, Phys. Lett. B 136 (1984) 183.
	- Partial compositeness: D B Kaplan, Nucl. Phys. B 365 (1991) 259.
- Modern composite Higgs models:
	- R Contino, Y Nomura, A Pomarol, [hep-ph/0306259], [hep-ph/0412089]
	- J Barnard, T Gherghetta, T S Ray, [1311.6562]
	- G Ferretti, D Karateev, [1312.5330],[1404.7137],[1604.06467]
	- And many more … ...
- Our contributions:
	- [1703.08011], [1712.07494], [2006.01164], [2105.01093], [2202.00037], [2203.07270], [2302.11598], [2311.17877], [2406.09193], [2406.14633]
	- In collaboration with G Bhattacharyya, S Dasgupta, D B Franzosi, G Ferretti, N Kumar, L Panizzi, T S Ray, V Ellajosyula, E B Kuutmann, R Enberg, W Porod, G Cacciapaglia, A Deandrea, B Fuks and others

Summary

- \bullet **Partial compositences** interactions are necessary to trigger electroweak symmetry breaking through vacuum misalignment.
- \bullet Lattice gauge theory studies required for more information on the anomalous dimensions of partial compositeness operators
- \bullet major predictions involve existence or vector-like quarks, spin-1 resonances and agno produs, an accessible @LHC
- \bullet First order phase transition at the EW scale is possible in presence of explicit CP violation, resulting GWs @LISA sensitivity range provide complimentary probe

Thank you!

Backup

UV theory of partial compositeness

Main idea is to start with a model without any elementary scalar

Couple the massless SM with a new strongly coupled gauge theory with fermionic matter [Hyperquark] $[Hypercolor]$

$$
\frac{\overline{\text{Fields}} \quad G_{\text{HC}} \quad G_{\text{SM}}}{f \equiv (q, l)} \qquad R_1 \qquad R_2 \qquad \mathcal{L}_{\text{UV}} \supset -\frac{1}{4} \sum_{G_{\text{HC}}, G_{\text{SM}}} F_{\mu\nu}^2 + i \sum_{\lambda, f} \bar{\psi} \mathcal{D} \psi - \sum_{\lambda} m_{\psi} \bar{\psi} \psi
$$

 $\,F^3$ G^3 EG^2 vectors dim-6 F^2G $f^3\chi$ $f^2\lambda^2$ $f\lambda^3$
 λFf fGf $\lambda F\lambda$ fermions dim-6 mixed dim-5 $\lambda G \lambda$ mixed dim-6 $\lambda F D \lambda$ $\lambda G D f$ $\lambda G D \lambda$ $fGDFf$

We will soon talk about the global symmetries of the strong sector

Comparison with QCD

- \bullet The hypercolor theory confines at $\Lambda_{HC} \sim 4\pi f \sim 10 \text{ TeV}$
- \bullet Higgs boson appears as a pNGB with decay constant $~f \sim 1~\rm{TeV}$

$$
\mathcal{L}_{\rm SM-H} + \mathcal{L}_{\rm HC} + \mathcal{L}_{\rm d>4} \rightarrow \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm comp} + \mathcal{L}_{\rm int}
$$

Global symmetries

- Wish List:
	- Anomaly free hyperquark content, leading to asymptotically free gauge theory
	- Global symmetry breaking pattern: $G_F \to H_F \supset G_{\text{cut}} \times SU(3)_c \supset G_{\text{SM}}$
	- At least one Higgs doublet among the pNGBs, requires color neutral hyperquarks ψ
	- VLQs, which can mix with SM quarks: partial compositeness, requires colored hyperquarks χ

EW pNGB content: Important prediction:
 A_2 of $Sp(4) \rightarrow (1,1) + (2,2)$

Two global U(1) symp S_2 of $SO(5) \rightarrow (1,1) + (2,2) + (3,3)$ Ad of $SU(4)_D \rightarrow (1,1) + 2.(2,2) + (3,1) + (1,3)$

I wo global U(1) symmetries, out of which one combination is non-anomalous

Existence of an $ALP \sim few GeV$

21

Vacuum misalignment via 4-Fermi operators

$$
\Psi \stackrel{G/H}{\rightarrow} \Psi_{R_1} + \Psi_{R_2} \implies \kappa_1 t \Psi_{R_1} + \kappa_2 t \Psi_{R_2}
$$
\n
$$
\mathcal{H}_{\text{PC}} = -\frac{i}{2} \int d^4 x \Delta^{\dot{\alpha}\alpha}(x) T \left\{ \mathcal{K}_R^{\dagger} \Psi_\alpha^R(x) \Psi_{Q\dot{\alpha}}^{\dagger}(0) \mathcal{K}^Q + \text{h.c.} \right\}
$$

$$
V_t \sim C\mu^2(\kappa_1^2 - \kappa_2^2)\phi^{\dagger}\phi + \dots
$$

Vector-like quark spectrum

- Spectrum is generic (little dependence on a specific model)
- \bullet Exotic states are lighter and tree-level degenerate
- \bullet One-loop mass splitting and off-diagonal self-energy

Overlapping resonance states

- \bullet Degenerate states are the lightest with off-diagonal terms in self energy
- \bullet One loop mass-splitting can be comparable to the decay widths

Overlapping resonance states

- \bullet Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

● Quantum interference leads to correlations between final states in a pair production process

AB, D B Franzosi, G Ferretti, JHEP 03 (2022) 200

25

Vector-like quarks @LHC

Limitations/ Rooms for improvement:

- Simplified model framework
- \bullet Interacting only with SM states
- \bullet 100% BR to specific SM channels
- Narrow width approximation

AB, D B Franzosi, G Ferretti, L Panizzi et al [2203.07270]

BSM decays of VLQs

 $pp \rightarrow T_{2/3} \bar{T}_{2/3} \rightarrow (tS^0) + X \rightarrow (t\gamma\gamma) + X$

Ongoing ATLAS search in diphoton final states

Benchmark coset: SU(5)/SO(5) $\sigma(M_T = 1.3 \text{ TeV}) \sim [1 - 10] \text{fb},$

AB, D B Franzosi, G Ferretti, JHEP 03 (2022) 200

$$
pp \to X_{8/3} \bar{X}_{8/3} \to (tS^{++}) (\bar{t}S^{--}) \to (2t \bar{b}W^+) (2\bar{t}bW^-)
$$

- \bullet Aim: searching $(\Psi \in 3_{5/3}) \to t + (S \in 3_{\pm 1})$
- \bullet Interesting feature: $X_{8/3} \rightarrow t + S^{++}$

