Composite Higgs models

BRIDGING COLLIDER, PHASE TRANSITION, AND LATTICE STUDIES

Avik Banerjee

Tata Institute of Fundamental Research, Mumbai

Based on: [2302.11598], [2406.14633]

PPC 2024, IIT Hyderabad

Why Composite Higgs?

- Hierarchy problem: how the electroweak is stabilized under quantum corrections?
- Is the Higgs boson an elementary particle? might as well be a composite state, just like a pion!
- Explain why top quark is so heavy compared to 1^{st} and 2^{nd} generation quarks?
- Electroweak phase transition and CP violation: depends on the shape of the scalar potential

Composite Higgs boson with partially composite top quark

Composite Higgs models

Main idea: UV theory without any elementary scalar

Couple the massless SM to a new strongly coupled gauge theory with fermionic matter [Hypercolor] [Hyperquark]

Figure courtesy: Marco Merchand

Dimensional transmutation creates large hierarchy of scales

Recap: QCD

Electromagnetism remains unbroken

Witten, 1983

Composite Higgs vacuum

$$\begin{array}{c} \begin{array}{c} G\\ H \end{array} \xrightarrow{SU(4)}{Sp(4)}, \begin{array}{c} SU(5)\\ SO(5), \end{array} \xrightarrow{SU(4) \times SU(4)}{SU(4)_{D}} \end{array}$$

$$\begin{array}{c} EWSB \xrightarrow{?} G_{EW} = SU(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{EM} \end{array}$$

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Composite Higgs vacuum

Analyze the potential around origin:

$$_0 \langle \operatorname{vac} | [Q^{\hat{a}}, \mathcal{H}] | \operatorname{vac} \rangle_0 = 0,$$
 ("no-tadpole condition"

 $(M^2)^{\hat{a}\hat{b}} = -\frac{1}{f^2} \,_0 \langle \operatorname{vac} | [Q^{\hat{a}}, [Q^{\hat{b}}, \mathcal{H}]] | \operatorname{vac} \rangle_0 \ge 0 \qquad (\text{``no-tachyon condition''})$

Tachyonic directions : vacuum misalignment

Vacuum misalignment

$$V_t \sim C\mu^2 (\kappa_1^2 - \kappa_2^2) \phi^{\dagger} \phi + \dots$$

AB, G Ferretti, Phys.Rev.D 107 (2023) 9, 095006

Similar to QCD $V_{\rm mass}$ and $V_{W,Z}$ can not misalign

$$V_{\rm mass} + V_{W,Z} \sim +\mu^2 \phi^{\dagger} \phi + \dots$$

Partial compositeness

Requirements:

- Nearly conformal dynamics above confinement scale
- Large anomalous dimension to reproduce top mass
- Lattice gauge theory studies required to compute the anomalous dimension

Ed Bennett et. al. Phys. Rev. D 106, 014501 V. Ayyar et. al. Phys. Rev. D 97, 114505

- Physical states are mixture of elementary and composite degrees of freedom
- Top quark is more composite compared to lighter quarks

Vacuum misalignment via 4-Fermi operators

$$\begin{split} \Psi \stackrel{G/H}{\to} \Psi_{R_1} + \Psi_{R_2} & \Longrightarrow \kappa_1 t \Psi_{R_1} + \kappa_2 t \Psi_{R_2} \\ \mathcal{H}_{\mathrm{PC}} &= -\frac{i}{2} \int d^4 x \Delta^{\dot{\alpha}\alpha}(x) T \left\{ \mathcal{K}_R^{\dagger} \Psi_{\alpha}^R(x) \Psi_{Q\dot{\alpha}}^{\dagger}(0) \mathcal{K}^Q + \mathrm{h.c.} \right\} \\ \hline V_t &\sim C \mu^2 (\kappa_1^2 - \kappa_2^2) \phi^{\dagger} \phi + \ldots \\ \mathbf{Sign undetermined} \end{split}$$

Regardless of the overall sign, tachyonic directions can exist

AB, G Ferretti, Phys.Rev.D 107 (2023) 9, 095006

$$C \sim \int \frac{d^4k}{(2\pi)^4} \int d\mu^2 \frac{\rho_1(\mu^2, m_1^2) - \rho_2(\mu^2, m_2^2)}{k^2 + \mu^2}$$

• Lattice calculations can in principle determine the overall sign dictating which irrep leads to misalignment Ed Bennett et al Phys Bi

Ed Bennett et. al. Phys. Rev. D 106, 014501 9 V. Ayyar et. al. Phys. Rev. D 97, 114505

SU(4)/Sp(4) coset: Higgs + CP odd singlet

Minimal Higgs potential hypothesis: Potential is dominated by the IR contributions (Coleman-Weinberg)

Maximal symmetry: Fully calculable finite scalar potential

Effect of strong dynamics is captured by momentum dependent form factors

SU(4)/Sp(4) coset: Higgs + CP odd singlet

Minimal Higgs potential hypothesis: Potential is dominated by the IR contributions (Coleman-Weinberg)

Maximal symmetry: Fully calculable finite scalar potential

Effect of strong dynamics is captured by momentum dependent form factors

$$V_{1-\text{loop}}(h,\eta) = V_{\text{mass}} + V_g + V_t$$

$$V_{\rm mass} = B f^3 {\rm tr} \left[\mu_H U + U^{\dagger} \mu_H^{\dagger} \right]$$

- Tadpole for the singlet (CP violation)
- Numerically small but relevant for giving vev to the singlet

$$V_{\rm CW} = \frac{N_{\rm eff}}{2} \int \frac{d^4 p}{(2\pi)^4} \log \left[1 + \frac{m_{W,Z,t}^2(h,\eta)m_1^2m_2^2}{p^2(p^2 + m_1^2)(p^2 + m_2^2)} \right]$$

Momentum dependence inside the integral is different from CW potential for elementary scalars

Full analytic computation: AB, M Merchand, I Nalecz JHEP 10 (2024) 106

Finite temperature potential

Imaginary time formalism:
$$\int dp^0 d^3p \ f(p^2) \to 2\pi T \sum_{n=-\infty}^{\infty} \int d^3p \ f(\omega_n^2 + |\vec{p}|^2)$$

$$V_{1-\text{loop}} = V_{\text{CW}}^{(T=0)}(\tilde{m}_i) + N_{\text{eff}} \frac{T^4}{2\pi^2} \sum_{i=1}^3 J_B\left(\frac{\tilde{m}_i}{T}\right)$$
$$V_{\text{CW}}^{(T=0)}(\tilde{m}_i) \equiv \frac{N_{\text{eff}}}{2} \int \frac{d^3p}{(2\pi)^3} \sum_{i=1}^3 \tilde{E}_i = \frac{N_{\text{eff}}}{32\pi^2} \sum_{i=1}^3 \tilde{m}_i^4 \log\left(\frac{\tilde{m}_i}{\mu}\right)$$
$$J_B(x) \equiv \int_0^\infty dy \, y^2 \log\left[1 - e^{-\sqrt{y^2 + x^2}}\right]$$

Zero temperature part nicely separates even in the presence of form factors

Fully calculable with maximal symmetry

Contributions from W,Z,t dominates

Resonance contributions are exponentially suppressed for $T_n \sim 100~GeV$

Phase transition and Gravitational wave

Tunneling from false vacuum to true EW vacuum by one step transition

Nucleation temperature: $\mathbf{T}_n \sim \mathbf{v}_{\rm EW}$

In presence of CP violation FOPT is viable even with IR contributions to the pNGB potential

13

Latent heat of FOPT and the peak frequency of the GWs depend on the amount of CP violation

-0.5-0.5-1.0-1.0-1.5 $\log(\frac{f_{\rm SW}}{1 \, {
m Hz}})$ $\log(\alpha)$ -2.0-2.5 -3.0-2.0-3.5 -4.0-2.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 $\tan(\delta)$

AB, M Merchand, I Nalecz JHEP 10 (2024) 106

Collider probes and constraints

Gravitational waves @LISA

15

Major References

- Pioneering works:
 - Composite pNGB Higgs: D B Kaplan, H Georgi, Phys. Lett. B 136 (1984) 183.
 - Partial compositeness: D B Kaplan, Nucl. Phys. B 365 (1991) 259.
- Modern composite Higgs models:
 - R Contino, Y Nomura, A Pomarol, [hep-ph/0306259], [hep-ph/0412089]
 - J Barnard, T Gherghetta, T S Ray, [1311.6562]
 - G Ferretti, D Karateev, [1312.5330], [1404.7137], [1604.06467]
 - And many more
- Our contributions:
 - $\begin{array}{l} & [1703.08011], [1712.07494], [2006.01164], [2105.01093], [2202.00037], [2203.07270], [2302.11598], \\ & [2311.17877], [2406.09193], [2406.14633] \end{array}$
 - In collaboration with G Bhattacharyya, S Dasgupta, D B Franzosi, G Ferretti, N Kumar, L Panizzi, T S Ray, V Ellajosyula, E B Kuutmann, R Enberg, W Porod, G Cacciapaglia, A Deandrea, B Fuks and others

Summary

- **Partial compositeness** interactions are necessary to trigger electroweak symmetry breaking through **vacuum misalignment**.
- Lattice gauge theory studies required for more information on the anomalous dimensions of partial compositeness operators
- Major predictions involve existence of **vector-like quarks, spin-1 resonances and light pNGBs**, all accessible **@LHC**
- First order phase transition at the EW scale is possible in presence of explicit CP violation, resulting GWs @LISA sensitivity range provide complimentary probe

Thank you!

Backup

UV theory of partial compositeness

Main idea is to start with a model without any elementary scalar

Couple the massless SM with a new strongly coupled gauge theory with fermionic matter [Hypercolor] [Hyperquark]

$$\begin{array}{c|ccc}
\hline Fields & G_{HC} & G_{SM} \\
\hline \lambda \equiv (\psi, \chi, ...) & R_1 & R_2 \\
f \equiv (q, l) & R_{SM}
\end{array} \qquad \mathcal{L}_{UV} \supset -\frac{1}{4} \sum_{G_{HC}, G_{SM}} F_{\mu\nu}^2 + i \sum_{\lambda, f} \bar{\psi} \not{D} \psi - \sum_{\lambda} m_{\psi} \bar{\psi} \psi$$

We will soon talk about the global symmetries of the strong sector

Comparison with QCD

- The hypercolor theory confines at $\Lambda_{\rm HC} \sim 4\pi f \sim 10 \ {\rm TeV}$
- Higgs boson appears as a pNGB with decay constant $~f\sim 1~{\rm TeV}$

$$\mathcal{L}_{SM-H} + \mathcal{L}_{HC} + \mathcal{L}_{d>4} \rightarrow \mathcal{L}_{SM} + \mathcal{L}_{comp} + \mathcal{L}_{int}$$

Properties	QCD	Composite Higgs	
Gauge group	$\mathrm{SU}(3)_c$	Hypercolor, $SU(N) / Sp(N) / SO(N)$	
Fundamental dof	Quarks, Gluons	Hyperquarks, Hypergluons	
Global symmetry	$\frac{\mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}}}{\mathrm{SU}(3)_{\mathrm{D}}}$	$rac{\mathrm{SU}(\mathrm{N})}{\mathrm{SO}(\mathrm{N})},\; rac{\mathrm{SU}(\mathrm{N})}{\mathrm{Sp}(\mathrm{N})},\; rac{\mathrm{SU}(\mathrm{N}){ imes}\mathrm{SU}(\mathrm{N})}{\mathrm{SU}(\mathrm{N})_{\mathrm{D}}}$	
pNGBs $\langle \psi \psi \rangle$	Pions	Higgs + BSM scalars	
$\langle \psi \gamma^{\mu} \psi \rangle$	ho - meson	spin-1 resonances	
$\langle \psi \psi \psi angle$	Baryons	VLQs (Top-partners)	
Partial compositeness –		Explains quark mass	
Vacuum misalignment	_	Triggers EWSB	

Global symmetries

- Wish List:
 - Anomaly free hyperquark content, leading to asymptotically free gauge theory
 - Global symmetry breaking pattern: $G_F \to H_F \supset G_{\text{cust}} \times SU(3)_c \supset G_{\text{SM}}$
 - At least one Higgs doublet among the pNGBs, requires color neutral hyperquarks ψ
 - VLQs, which can mix with SM quarks: partial compositeness, requires colored hyperquarks χ

	$\psi \in \mathbf{R}$	$\psi \in \mathrm{PR}$	$\psi, \tilde{\psi} \in \mathrm{C}$	
$\chi \in \mathbf{R}$	$\frac{SU(5)}{SO(5)} \times \frac{SU(6)}{SO(6)} \times U(1)_u$	$\frac{SU(4)}{Sp(4)} \times \frac{SU(6)}{SO(6)} \times U(1)_u$	$\frac{SU(4) \times SU(4)'}{SU(4)_D} \times \frac{SU(6)}{SO(6)} \times U(1)_u$	
$\chi \in \mathrm{PR}$	$\frac{SU(5)}{SO(5)} \times \frac{SU(6)}{Sp(6)} \times U(1)_u$	$\frac{SU(4)}{Sp(4)} \times \frac{SU(6)}{Sp(6)} \times U(1)_u$	$\frac{SU(4) \times SU(4)'}{SU(4)_D} \times \frac{SU(6)}{Sp(6)} \times U(1)_u$	
$\chi,\tilde\chi\in\mathcal{C}$	$\frac{SU(5)}{SO(5)} \times \frac{SU(3) \times SU(3)'}{SU(3)_D} \times U(1)_u$	$\frac{SU(4)}{Sp(4)} \times \frac{SU(3) \times SU(3)'}{SU(3)_D} \times U(1)_u$	$\frac{SU(4) \times SU(4)'}{SU(4)_D} \times \frac{SU(3) \times SU(3)'}{SU(3)_D} \times U(1)_u$	

EW pNGB content:

A₂ of Sp(4) → (1, 1) + (2, 2)**S**₂ of SO(5) → (1, 1) + (2, 2) + (3, 3)**Ad**of SU(4)_D → (1, 1) + 2.(2, 2) + (3, 1) + (1, 3) Important prediction:

Two global U(1) symmetries, out of which one combination is non-anomalous

Existence of an ALP \sim few GeV

21

Vacuum misalignment via 4-Fermi operators

$$\Psi \stackrel{G/H}{\to} \Psi_{R_1} + \Psi_{R_2} \implies \kappa_1 t \Psi_{R_1} + \kappa_2 t \Psi_{R_2}$$
$$\mathcal{H}_{PC} = -\frac{i}{2} \int d^4 x \Delta^{\dot{\alpha}\alpha}(x) T \left\{ \mathcal{K}_R^{\dagger} \Psi_{\alpha}^R(x) \Psi_{Q\dot{\alpha}}^{\dagger}(0) \mathcal{K}^Q + \text{h.c.} \right\}$$

$$V_t \sim C\mu^2 (\kappa_1^2 - \kappa_2^2) \phi^{\dagger} \phi + \dots$$

SU(N)	\rightarrow	SO(N)	
Ad		$\mathbf{Ad} + \mathbf{S}_2$	$\operatorname{tr}(\mathcal{P}U\mathcal{P}^*U^*)$
\mathbf{S}_2		$1 + \mathbf{S}_2$	$\operatorname{tr}(\mathcal{P}U^*)\operatorname{tr}(\mathcal{P}^*U)$
SU(2N)	\rightarrow	Sp(2N)	
Ad		$\mathbf{A}\mathbf{d} + \mathbf{A}_2$	$\operatorname{tr}(\mathcal{P}U\mathcal{P}^*U^*)$
\mathbf{A}_2		$1+\mathbf{A}_2$	$\operatorname{tr}(\mathcal{P}U^*)\operatorname{tr}(\mathcal{P}^*U)$
$SU(N) \times SU(N)$	\rightarrow	SU(N)	
(\mathbf{F},\mathbf{F})		$\mathbf{A}_2 + \mathbf{S}_2$	$\operatorname{tr}(U\mathcal{P}^T U^* \mathcal{P}^\dagger)$
$({f F},\overline{{f F}})$		$1 + \mathrm{Ad}$	$\operatorname{tr}(\mathcal{P}U^{\dagger})\operatorname{tr}(\mathcal{P}^{\dagger}U)$

Vector-like quark spectrum

- Spectrum is generic (little dependence on a specific model)
- Exotic states are lighter and tree-level degenerate
- One-loop mass splitting and off-diagonal self-energy

Overlapping resonance states

- Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

Overlapping resonance states

- Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

• Quantum interference leads to correlations between final states in a pair production process

25

AB, D B Franzosi, G Ferretti, JHEP 03 (2022) 200

Vector-like quarks @LHC

Limitations/ Rooms for improvement:

- Simplified model framework
- Interacting only with SM states
- 100% BR to specific SM channels
- Narrow width approximation

AB, D B Franzosi, G Ferretti, L Panizzi et al [2203.07270]

BSM decays of VLQs

 $pp \to T_{2/3}\bar{T}_{2/3} \to (tS^0) + X \to (t\gamma\gamma) + X$

Ongoing ATLAS search in diphoton final states

Benchmark coset: SU(5)/SO(5) $\sigma(M_T = 1.3 \text{ TeV}) \sim [1 - 10] \text{fb},$

AB, D B Franzosi, G Ferretti, JHEP 03 (2022) 200

$$pp \to X_{8/3}\bar{X}_{8/3} \to (tS^{++}) \, (\bar{t}S^{--}) \to (2t\,\bar{b}W^+) \, (2\bar{t}\,bW^-)$$

- Aim: searching $(\Psi \in 3_{5/3}) \rightarrow t + (S \in 3_{\pm 1})$
- Interesting feature: $X_{8/3} \to t + S^{++}$

AB, V Ellajosyula, L Panizzi, [2311.17877]

27