DEGENERACIES IN PRESENCE OF INVISIBLE DECAY OF NEUTRINOS

SUPRIYA PAN **POST-DOCTORAL FELLOW PHYSICAL RESEARCH LABORATORY** PPC 2024, IIT Hydrabad

 $-\infty$

In collaboration with

Prof. Srubabatí Goswamí, Dr. Anímesh Chatterjee, Mr. Paras Thacker

NEU

TRINO OSCILLATION FRAMEWORK

$$U = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}$$
Solar Reactor Atmospheric/

$$M_{\mu,\mu_{\alpha}} \xrightarrow{e_{\mu,\mu,\mu_{\alpha}}} \xrightarrow{e_{\mu,\mu,\mu_{\alpha}}} A = 2\sqrt{2}G_{\mu}N_{e}E_{\mu} = 7.6 \times 10^{-5}\frac{\rho}{g/cc}\frac{E_{\nu}}{GeV}$$

$$H = \frac{1}{2E_{\nu}}U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \begin{bmatrix} A/2E_{\nu} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$I^{2} = \delta_{\alpha\beta} - 4\sum_{i>j}^{3} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}\frac{1.27\Delta_{ij}L}{E_{\nu}} + 2\sum_{i>j}^{3} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin\frac{2 \times 1.2}{E_{\nu}}$$

 $\left[\Delta_{ij} = m_i^2 - m_j^2 \right] : \Delta_{21}(\text{solar}), \Delta_{31}(\text{atmospheric}), \theta_{12}(\text{solar}), \theta_{13}(\text{reactor}), \theta_{23}, \text{Phase: } \delta_{CP} \right]$

Value of δ_{13}

Octant of θ_{23}

Higher Octant $(\theta_{23} > 45^{\circ})$

Lower Octant $(\theta_{23} < 45^{\circ})$

$$H^{mat} = \frac{1}{2E_{\nu}} U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + H_{int} + \mathbf{H}$$

$$\begin{aligned} & \text{INVISIBLE NEUTRINO DECAY } \begin{bmatrix} \nu_{i} \rightarrow \nu + X \end{bmatrix} \\ & H = \frac{1}{2E_{\nu}} U \Big(\begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -i\alpha_{3} \end{bmatrix} \Big) U^{\dagger} + \begin{bmatrix} A/2E_{\nu} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ & \kappa_{3} = \alpha_{3}L/L \\ & \kappa_{3} = \alpha_{3}L \\ & \kappa_{3} = \alpha_{3}L \\ & \kappa_{3} = \alpha_{3}L \\ & \kappa_{3} = \alpha_{3}L/L \\ & \kappa_{3} = \alpha_{3}$$

EXPERIMENTAL SPECIFICATIONS

- Water Cherenkov detector: 4 M ton
- Beam: 90 kW, POT: 4×10^{20} /yr
- Average density: 3.8 g/cc
- 2588 km is close to bimagic baseline
- Runtime: 3 yr(v) + 3 $yr(\bar{v})$
- Peak energy: 2-3 GeV
- Relatively large background

Target	Proton Beam	
Ac		

Parameters	True values	Test values
$ heta_{12}$	33.4°	33.4°
$ heta_{13}$	8.42°	8.42°
θ_{23} (Hierarchy)	41°	39° : 51°
θ_{23} (Octant)	$41^{\circ} (49^{\circ})$	$45^\circ:51^\circ\;(39^\circ:45^\circ)$
δ_{CP}	-180° : 180°	$-180^{\circ}: 180^{\circ}$
$\delta_{CP}(\text{CP sensitivity})$	-180° : 180°	$-180^{\circ}, 0, 180^{\circ}$
Δm^2_{21}	$7.53 imes10^{-5}$	$7.53 imes10^{-5}$
$\Delta m^2_{31}({ m Hierarchy})$	$\pm 2.45 \times 10^{-3} \text{ eV}^2$	$\mp [2.35:2.6] \times 10^{-3} \text{ eV}^2$
$\Delta m^2_{31}({ m Octant})$	$\pm 2.45 \times 10^{-3} \text{ eV}^2$	$\pm [2.35:2.6] \times 10^{-3} \text{ eV}^2$
α_3^{-1}	$2.0 imes 10^{-11} \mathrm{~s/eV}$	$[1.0:3.0] imes 10^{-11}~{ m s/eV}$

 Table 1. The true and test values of oscillation parameters.

1300 km (DUNE)

- Liquid Argon detector: 40 k ton
- Beam: I.2 MW, POT: $10 \times 10^{20}/yr$
- Average density: 2.85 g/cc
- I 300 km baseline
- Runtime: 3.5 $yr(\nu)$ + 3.5 $yr(\bar{\nu})$
- Peak energy: 4-5 GeV
- Lesser background

DEGENERACY RELATED TO MASS ORDERING

- Lowering of NH band in $P_{\mu e} \Rightarrow$ decreased sensitivity •
- Broadening of bands at minimum energy • corresponding to NH, IH in $P_{\mu e}$ (inset). This effect leads violation of bimagic conditions at 2588 km.

$$P_{\mu e}^{\rm BM} = s_{13}^2 s_{23}^2 \left(1 + e^{-4\kappa_3} - 2e^{-2\kappa_3}\right) \frac{\alpha_3^2 + \Delta_{31}^2}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \alpha s_{13} \sin 2\theta_{12} \sin 2\theta_{13} \frac{\sin \hat{A}\Delta}{\hat{A}} + \hat{A} s_{13} \sin 2\theta_{13} \sin 2\theta_{13} \frac{\sin \hat{A}\Delta}{\hat{A}} + \hat{A} s_{13} \sin 2\theta_{13} \sin 2\theta$$

$$\left[\left(\sin[\delta_{CP} - \Delta]e^{-2\kappa_3} + \sin[\hat{A}\Delta - \delta_{CP}]\right)\frac{\Delta_{31}^2(\hat{A} - 1) - \alpha_3^2}{\Delta_{31}^2(\hat{A} - 1)^2 + \alpha_3^2} + \left(\cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right)\frac{A\alpha_3}{\Delta_{31}^2(\hat{A} - 1)^2 + \alpha_3^2}\right]$$

Bands of NH, IH both lowered in $P_{\mu\mu} \Rightarrow$ separation between bands stays similar \Rightarrow unchanged sensitivity

DEGENERACY RELATED TO MASS ORDERING

- Lowering of NH band in $P_{\mu e} \Rightarrow$ decreased sensitivity •
- Broadening of bands at minimum energy • corresponding to NH, IH in $P_{\mu e}$ (inset). This effect leads violation of bimagic conditions at 2588 km.

$$P_{\mu e}^{\text{BM}} = s_{13}^2 s_{23}^2 \left(1 + e^{-4\kappa_3} - 2e^{-2\kappa_3}\right) \frac{\alpha_3^2 + \Delta_{31}^2}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \alpha s_{13} \sin 2\theta_{12} \sin 2\theta_{13} \frac{\sin \hat{A}\Delta}{\hat{A}} \times \left[\left(\sin[\delta_{CP} - \Delta]e^{-2\kappa_3} + \sin[\hat{A}\Delta - \delta_{CP}]\right) \frac{\Delta_{31}^2 (\hat{A} - 1) - \alpha_3^2}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \left(\cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right) \frac{A\alpha_3}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \left(\cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right) \frac{A\alpha_3}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \left(\cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right) \frac{A\alpha_3}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \left(\cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right) \frac{A\alpha_3}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \left(\cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right) \frac{A\alpha_3}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \cos[\hat{A}\Delta - \delta_{CP}] - \cos[\delta_{CP} - \Delta]e^{-2\kappa_3}\right) \frac{A\alpha_3}{\Delta_{31}^2 (\hat{A} - 1)^2 + \alpha_3^2} + \cos[\hat{A}\Delta - \delta_{CP}] - \cos[\hat{A}\Delta - \delta_{CP}]$$

Bands of NH, IH both lowered in $P_{\mu\mu} \Rightarrow$ separation between bands stays similar \Rightarrow unchanged sensitivity

MASS ORDERING SENSITIVITY

MASS ORDERING SENSITIVITY

MASS ORDERING SENSITIVITY

DEGENERACY RELATED TO OCTANT OF θ_{23}

- Separation b/w HO band and 41° curve around 4 GeV smaller in $P_{\mu e} \Rightarrow$ decreased sensitivity
- Separation between in $P_{\mu\mu}$ is higher for decay around 4 GeV \Rightarrow increased sensitivity

value of decay \Rightarrow New degeneracy b/w $\theta_{23} - \alpha_3$

DEGENERACY RELATED TO OCTANT OF θ_{23}

- Separation b/w HO band and 41° curve around 2.5 GeV smaller in $P_{\mu e} \Rightarrow$ decreased sensitivity
- Separation between in $P_{\mu\mu}$ is higher for decay around 2.5 GeV \Rightarrow increased sensitivity

* Decrease in $P_{\mu e}, P_{\mu \mu}$ for lowering θ_{23} and higher

#

OCTANT SENSITIVITY

10

EVENTS SPECTRUM

SENSITIVITY IN $\theta_{23} - \delta_{CP}$ PLANE

Dot-dashed, dashed, and solid lines correspond to P2O, DUNE and P2O+DUNE combined analysis. Orange and blue colours stand for 5σ , 3σ contours.

DUNE+P2O removes all the wrong octant, wrong δ_{CP} solutions

CONCLUSIONS

- Sensitivity to mass ordering reduces for decay in both baselines.
- ★ MO sensitivity shows different dependance with θ_{23} in IH. In 2588 km it is due to ν_e channel
- ✦ Sensitivity to octant increases for decay in 2588 for θ_{23} in both HO and LO
- ◆ Octant sensitivity increases when θ_{23} in LO and decreases for θ_{23} in HO for decay
- Contribution of $\nu_{\mu}(\nu_{e})$ channel in octant sensitivity is higher in 2588 km (1300 km).
- ✤ Joint analysis of DUNE, P2O removes wrong θ_{23} , wrong δ_{CP} solutions.

y in both baselines. with θ_{00} in IH. In

