

Hadronic B decays at Belle and Belle II

Swarna Prabha Maharana(IIT Hyderabad) on behalf of the Belle II collaboration

$B \rightarrow Hadronic$

- Dominated by the $b \rightarrow c$ trees.
- Hadronic decays of B-mesons account for ~75% of the total branching fraction.

For today:

- $B^- \rightarrow D^0 \rho(770)^{--}$
- $B \rightarrow D^{(*)}KK_{s}$
- Belle + Belle II combined measurement of ϕ_3
- $B \rightarrow \pi^0 \pi^0$: towards ϕ_2

Probe the SM:

- over-constrain CKM triangle
 φ₁/β: via time-dependent analysis of e.g. J/ψK_S
 φ₂/α: via isospin analysis of B→ρρ, B→ππ
 φ₃/γ: via B⁻→Dh⁻, B⁻→D*K⁻
- via isospin sum rules

Hadronic Tagging

- Missing energy modes need tagging.
- Hadronic tagging has high purity as well as gives direction of B.
- But large data-MC discrepancy in several channels

- Only half of the hadronic B decays are measured.
- PYTHIA generates the other half in MC.
- Most measurements are performed with small data sets.

Improving FEI efficiency \rightarrow More DATA in hand

Swarna

Hadronic B decays at Belle and Belle II

Belle II

Analysis

1. Reconstruction

- Start with final state particles
- Form a B candidate

2. Selection

- **Background suppression**
- Mostly continuum background
- 3. Modelling + Fit
 - Model using simulation
 - fit to data to extract physics quantities
- 4. Systematic uncertainties
 - toy studies + control modes

Challenges: small BR, high backgrounds, neutrals

Hadronic B decays at Belle and Belle II

5.3

Signal

Continuum

BB̄ background

0.2

 ΔE (GeV)

5.28

 $M_{
m bc}$ (GeV/c²)

0.3

0.1

Improving knowledge on B decays

$B^-\!\to D^0\rho(770)^-$

[Phys. Rev. D 109, L111103]

- PDG measurement- (1.35±0.18)% by CLEO(1994) with 0.9fb-1, which includes large uncertainty
- $B^- \rightarrow D^0 \rho^-$, $B^0 \rightarrow D^+ \rho^-$, and $B^0 \rightarrow D^0 \rho^0$ provides tests of calculations of hadronic decay rates based on the heavy-quark limit and factorization models. Needs to account: Contamination from non-resonant component $B^- \rightarrow D^0 \pi \pi^0$ contribution in ΔE .

• Signal Extraction- unbinned maximum likelihood fit to ΔE distribution Solution: Perform fit in bins of $\cos\theta_{\rho}$ (θ_{ρ} the angle between the π^{-} momentum and the direction opposite to the B⁻ momentum in the ρ^{-} rest frame)

$B^- \to D^0 \rho(770)^-$

Template fit to distribution $\cos\theta_{o}$:

- non-uniform binning: flat distribution for $B^- \rightarrow D^0 \rho^-$
- $\cos\theta_{0} < 0.7$: to suppress decays $B^{-} \rightarrow D^{**}\pi$
- ~ $(1.9 \pm 1.8)\%$ contribution of B⁻ \rightarrow D⁰ $\pi\pi^0$

[Phys. Rev. D 109, L111103] $\mathcal{B}(B^- \to D^0 \rho^-) = (0.939 \pm 0.021 \pm 0.050)\%$ $2 \times \text{ better precision!!}$

Systematically limited by π^0 reconstruction efficiency

Factorization test : In agreement with prediction

$B \rightarrow D^{(*)}KK^{(*)0}_{(S)}$ and $B \rightarrow D^{(*)}D^{-}_{s}$

[J. High Energ. Phys. 2024, 206]

 $\int Ldt = 362 \text{ fb}^-$

Background

0.2 0.25

∆E [GeV]

 $\int Ldt = 362 \text{ fb}^{-1}$

Phase-space signal

B → Da (1260) signal

 $B \rightarrow Da_{*}(1640)^{-}$ signal

DKK π cross-feed

- $B \rightarrow DK^{-}K$ decays make up a few percent of the overall hadronic branching fraction
 - Only a small amount of them are well measured.
 - Serves as inputs for simulations and tagging techniques.
 - Possibility of $B \rightarrow DX^{-}(\rightarrow K^{-}K)$, with an intermediate resonance X⁻ that decays strongly,
- Challenge: bkg from non-resonant $B \rightarrow DK^-K\pi$ Modes in K* modes \rightarrow fit to M(K π)
 - Signal Extraction: fit ΔE distribution
 - BFs extracted applying an efficiency correction in the plane $M(D^{(*)}K_{g}^{(*)0}, M(K^{-}K_{g}^{(*)0}))$
 - Extraction of bkg-subtracted and efficiency-corrected invariant mass and helicity angles.
 - $J^{P}=1^{-/+}$ dominant transitions

3.5

Channel	Yield (K_S^0 / K^{*0})	Average $\varepsilon~(K^0_S~/~K^{*0})$	$\mathcal{B}\left[10^{-4} ight]$
$B^- \rightarrow D^0 K^- K^0_S$	209 ± 17	0.098	$1.82 \pm 0.16 \pm 0.08$
$\overline{B}{}^{\overline{0}} \rightarrow \overline{D}{}^{\overline{+}} \overline{K}{}^{\overline{-}} \overline{K}{}^{\overline{0}}_{S}$	105 ± 14	0.048	$0.82 \pm 0.12 \pm 0.05$ Linet
$B^- ightarrow D^{*0} K^- \tilde{K}^0_S$	51 ± 9	0.044	$1.47 \pm 0.27 \pm 0.10$ IF It'st Laboration
$\overline{B}{}^0 \rightarrow D^{*+} K^- K_S^{0}$	36 ± 7	0.046	$0.91 \pm 0.19 \pm 0.05$
$\bar{B}^- \rightarrow \bar{D}^0 \bar{K}^- \bar{K}^{*0}$	$\overline{325\pm19}$	0.043	$\overline{7.19} \pm \overline{0.45} \pm \overline{0.33}$
$ar{B}^0 ightarrow D^+ K^- K^{*0}$	385 ± 22	0.021	$7.56 \pm 0.45 \pm 0.38$ 3 × better
$B^- \rightarrow D^{*0} K^- K^{*0}$	160 ± 15	0.019	$11.93 \pm 1.14 \pm 0.93$ precision
$\bar{B}^0 \rightarrow D^{*+} K^- K^{*0}$	193 ± 14	0.020	$13.12 \pm 1.21 \pm 0.71$
$B^- \rightarrow D^0 D_s^-$	$144 \pm 12~/~153 \pm 13$	0.04 / 0.09	$95\pm 6\pm 5$
$\overline{B}{}^0 \rightarrow D^+ D_s^-$	145 ± 12 / 159 ± 13	0.02 / 0.05	$89 \pm 5 \pm 5$ World's best
$B^- \rightarrow D^{*0} D_s^-$	$30 \pm 6 \; / \; 29 \pm 7$	0.02 / 0.04	$65\pm10\pm6$
$\overline{B}{}^0 ightarrow D^{*+} D^{-}_s$	$43 \pm 7 \ / \ 37 \pm 7$	$0.02 \ / \ 0.04$	$83\pm10\pm6$

CPV via CKM

ϕ_3/γ measurement:Belle + Belle II combination

$$\phi_3 \equiv \arg \left(-V_{ud} V_{ub}^* / V_{cd} V_{cb}^*\right)$$

- Tree level decays no (large) BSM
- Strong constraint on SM

various approaches — different final states:

- Self-conjugate final states
- Cabibbo-suppressed decays ,
- eigenstates
- First combination of all Belle and Belle II measurements:

59 input observables, 18 free parameters.

B decay	D decay	Method	Data set (Belle + Bell	$le II)[fb^{-1}]$
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189	[JHEP 05 212 (2024)]
$B^+ \to Dh^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0	[PRL 106 231803 (2011), PRD 88 091104(2013)]
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 K^- \pi^+$	GLS	711 + 362	[JHEP 09 146 (2023)]
$B^+ \to Dh^+$	$D ightarrow K_{ m s}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128	[JHEP 02 063 (2022)]
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0	[JHEP 10 178 (2019)]
$B^+ \rightarrow D^* K^+$	$D^* o D\pi^0, D o K^0_{ m S}\pi^0, K^0_{ m S}\phi, K^0_{ m S}\omega, \ K^-K^+, \pi^-\pi^+$	GLW	210 + 0	[PRD 73 051106 (2006)]
$B^+ \rightarrow D^* K^+$	$D^* \rightarrow D\pi^0, D\gamma, D \rightarrow K^0_{ m S}\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0	[PRD 81 112002 (2010)]

Hadronic B decays at Belle and Belle II

ϕ_3/γ measurement:Belle + Belle II combination

$B^0 \rightarrow \pi^0 \pi^0$: towards ϕ_2

Tree-level b—uud processes allow extraction of ϕ_2

- Interference with penguin amplitudes
- Statistical limitation due to color suppression in tree diagram

First measurement of $B^0 \rightarrow \pi^0 \pi^0 at$ Belle II

- 4 photons in final state
- Suffers from large background
- Update on BF and A_{CP} using full Run-1 statistics with
 - new GNN-based flavor tagger
 - BDT dedicated for photon selection and qq suppression
- reduction of systematic uncertainties Signal extraction by simultaneous fit
 - ΔE , Mbc, BDT output (C), transformed wrong tag probability

$$\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.26 \pm 0.20 \pm 0.11) \ge 10^{-6}$$

$$A_{CP}(B^0 \to \pi^0 \pi^0) = 0.06 \pm 0.30 \pm 0.06$$

Compatible with world averages despite smaller data sample

- Improve B decay knowledge $B^- \rightarrow D^0 \rho^-$, $B \rightarrow DD_S$ New decay modes observed $B \rightarrow D^{(*)}K^-K_S^{(*)0}$.
- Combining Belle and Belle II measurements to precisely measure ϕ_3
- Progress towards measurement of ϕ_9

Run 2 started, more luminosity on it's way!

$B^0 \rightarrow \omega \omega$

- Rare and never observed decay
- Polarisation (f_L) and direct-CPV parameter A_{CP} useful for $B \rightarrow VV$ decays
- BF, f_L and A_{CP} extraction in full Belle dataset
- Bkg suppressed using event-topology information
- Signal extraction from fit to: ΔE , M_{bc} , continuum suppression output, ω invariant masses and cosine of helicity angles of both the ω 's

$$\mathcal{B} = (1.53 \pm 0.29 \pm 0.17) \times 10^{-6}$$

$$f_L = 0.87 \pm 0.13 \pm 0.13$$

$$A_{CP} = -0.44 \pm 0.43 \pm 0.11,$$

bkg-subtracted and efficiency corrected $m(K^-K)$ distributions

